Log in

Combination of excitation-emission matrix fluorescence spectroscopy and chemometric methods for the rapid identification of cheaper vegetable oil adulterated in walnut oil

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Walnut oil (WNO) is considered as natural functional food of high economic interest due to its nutritional and medicinal benefits. Adulteration in WNO seriously damages the interests of consumers and the health of market. In this paper, a new strategy has been developed to identify the adulteration of WNO with other cheaper vegetable oils. The study was based on the chemometric analysis of excitation-emission matrix (EEM) fluorescence spectroscopy data of WNO samples containing different adulterants. First, alternating normalization-weighted error (ANWE) method was used for the data decomposition of oil samples to obtain spectral characteristics and chemical meaning information. Then, three pattern recognition methods were employed to build the classification models, including partial least squares discriminant analysis employing ANWE scores (ANWE-PLS-DA), k-nearest neighbor (kNN), and N-way partial least squares discriminant analysis (N-PLS-DA). Results showed that all models obtained good classification performances for the WNO and other vegetable oils (case 1). Moreover, N-PLS-DA outperformed ANWE-PLS-DA and kNN in the identification of pure and adulterated WNO samples (case 2). The accuracy rates of N-PLS-DA were 87.1–90.6% when predicting WNO samples with adulteration level above 5%. The proposed methods were simple, rapid, and available for the identification of cheaper vegetable oil adulterated in WNO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.A. Pereira, I. Oliveira, A. Sousa, I.C. Ferreira, A. Bento, L. Estevinho, Bioactive properties and chemical composition of six walnut (Juglans regia L.) cultivars. Food Chem. Toxicol. 46(6), 2103–2111 (2008). https://doi.org/10.1016/j.fct.2008.02.002

    Article  CAS  PubMed  Google Scholar 

  2. C. Crews, P. Hough, J. Godward, P. Brereton, M. Lees, S. Guiet, W. Winkelmann, Study of the main constituents of some authentic hazelnut oils. J. Agric. Food. Chem. 53(12), 4843–4852 (2005). https://doi.org/10.1021/jf0478354

    Article  CAS  PubMed  Google Scholar 

  3. S.M.T. Gharibzahedi, S.M. Mousavi, M. Hamedi, F. Khodaiyan, Determination and characterization of kernel biochemical composition and functional compounds of Persian walnut oil. J. Food Sci. Technol. 51, 34–42 (2014). https://doi.org/10.1007/s13197-011-0481-2

    Article  CAS  PubMed  Google Scholar 

  4. C. Alasalvar, J.-S. Salvadó, E. Ros, Bioactives and health benefits of nuts and dried fruits. Food Chem. 314, 126192 (2020). https://doi.org/10.1016/j.foodchem.2020.126192

    Article  CAS  PubMed  Google Scholar 

  5. M. De Lorgeril, P. Salen, Alpha-linolenic acid and coronary heart disease. Nutr. Metab. Cardiovasc. Dis. 14(3), 162–169 (2004). https://doi.org/10.1016/S0939-4753(04)80037-1

    Article  PubMed  Google Scholar 

  6. F. Lavedrine, D. Zmirou, A. Ravel, F. Balducci, J. Alary, Blood cholesterol and walnut consumption: a cross-sectional survey in France. Prev. Med. 28(4), 333–339 (1999). https://doi.org/10.1006/pmed.1999.0460

    Article  CAS  PubMed  Google Scholar 

  7. D. Hayes, M.J. Angove, J. Tucci, C. Dennis, Walnuts (Juglans regia) chemical composition and research in human health. Crit. Rev. Food Sci. Nutr. 56(8), 1231–1241 (2016). https://doi.org/10.1080/10408398.2012.760516

    Article  CAS  PubMed  Google Scholar 

  8. C. **ng, X. Yuan, X. Wu, X. Shao, J. Yuan, W. Yan, Chemometric classification and quantification of sesame oil adulterated with other vegetable oils based on fatty acids composition by gas chromatography. LWT 108, 437–445 (2019). https://doi.org/10.1016/j.lwt.2019.03.085

    Article  CAS  Google Scholar 

  9. A. Rueda, C. Samaniego-Sánchez, M. Olalla, R. Giménez, C. Cabrera-Vique, I. Seiquer, L. Lara, Combination of analytical and chemometric methods as a useful tool for the characterization of extra virgin argan oil and other edible virgin oils. Role of polyphenols and tocopherols. J. AOAC Int. 99(2), 489–494 (2016). https://doi.org/10.5740/jaoacint.15-0121

    Article  CAS  PubMed  Google Scholar 

  10. N.P. Kalogiouri, N. Manousi, E. Rosenberg, G.A. Zachariadis, A. Paraskevopoulou, V. Samanidou, Exploring the volatile metabolome of conventional and organic walnut oils by solid-phase microextraction and analysis by GC-MS combined with chemometrics. Food Chem. 363, 130331 (2021). https://doi.org/10.1016/j.foodchem.2021.130331

    Article  CAS  PubMed  Google Scholar 

  11. A. Jakab, K. Héberger, E. Forgács, Comparative analysis of different plant oils by high-performance liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. A 976, 255–263 (2002). https://doi.org/10.1016/s0021-9673(02)01233-5

    Article  CAS  PubMed  Google Scholar 

  12. H. Karami, M. Rasekh, E. Mirzaee-Ghaleh, Qualitative analysis of edible oil oxidation using an olfactory machine. J. Food Meas. Charact. 14(5), 2600–2610 (2020). https://doi.org/10.1007/s11694-020-00506-0

    Article  Google Scholar 

  13. C.A. Nunes, Vibrational spectroscopy and chemometrics to assess authenticity, adulteration and intrinsic quality parameters of edible oils and fats. Food Res. Int. 60, 255–261 (2014). https://doi.org/10.1016/j.foodres.2013.08.041

    Article  CAS  Google Scholar 

  14. R. Jamwal, S. Kumari, S. Sharma, S. Kelly, A. Cannavan, D.K. Singh, Recent trends in the use of FTIR spectroscopy integrated with chemometrics for the detection of edible oil adulteration. Vib. Spectrosc. 113, 103222 (2021). https://doi.org/10.1016/j.vibspec.2021.103222

    Article  CAS  Google Scholar 

  15. B. Li, H. Wang, Q. Zhao, J. Ouyang, Y. Wu, Rapid detection of authenticity and adulteration of walnut oil by FTIR and fluorescence spectroscopy: a comparative study. Food Chem. 181, 25–30 (2015). https://doi.org/10.1016/j.foodchem.2015.02.079

    Article  CAS  PubMed  Google Scholar 

  16. H.T. Temiz, S.D. Velioglu, K.G. Guner, H.M. Velioglu, The use of Raman spectroscopy and chemometrics for the discrimination of lab-produced, commercial, and adulterated cold-pressed oils. LWT 146, 111479 (2021). https://doi.org/10.1016/j.lwt.2021.111479

    Article  CAS  Google Scholar 

  17. G.Y. Tiryaki, H. Ayvaz, Quantification of soybean oil adulteration in extra virgin olive oil using portable raman spectroscopy. J. Food Meas. Charact. 11(2), 523–529 (2017). https://doi.org/10.1007/s11694-016-9419-8

    Article  Google Scholar 

  18. F. Turrini, P. Zunin, R. Boggia, Potentialities of rapid analytical strategies for the identification of the botanical species of several “Specialty” or “Gourmet” oils. Foods 10, 183 (2021). https://doi.org/10.3390/foods10010183

    Article  PubMed  PubMed Central  Google Scholar 

  19. R. Popescu, R.E. Ionete, O.R. Botoran, D. Costinel, F. Bucura, E.I. Geana, Y.F.J. Alabedallat, M. Botu, 1H-NMR profiling and carbon isotope discrimination as tools for the comparative assessment of walnut (Juglans regia L.) cultivars with various geographical and genetic origins—a preliminary study. Molecules 24, 1378 (2019). https://doi.org/10.3390/molecules24071378

    Article  CAS  PubMed Central  Google Scholar 

  20. A. Dankowska, Advances in fluorescence emission spectroscopy for food authenticity testing, Advances in Food Authenticity Testing (Elsevier, Amsterdam, 2016), pp. 117–145

    Google Scholar 

  21. K.I. Poulli, G.A. Mousdis, C.A. Georgiou, Synchronous fluorescence spectroscopy for quantitative determination of virgin olive oil adulteration with sunflower oil. Anal. Bioanal. Chem. 386, 1571–1575 (2006). https://doi.org/10.1007/s00216-006-0729-2

    Article  CAS  PubMed  Google Scholar 

  22. K.I. Poulli, G.A. Mousdis, C.A. Georgiou, Rapid synchronous fluorescence method for virgin olive oil adulteration assessment. Food Chem. 105(1), 369–375 (2007). https://doi.org/10.1016/j.foodchem.2006.12.021

    Article  CAS  Google Scholar 

  23. A. Dankowska, M. Małecka, W. Kowalewskib, Discrimination of edible olive oils by means of synchronous fluorescence spectroscopy with multivariate data analysis. Grasas Aceites 64(4), 425–431 (2013). https://doi.org/10.3989/gya.012613

    Article  CAS  Google Scholar 

  24. T. Wang, H.-L. Wu, W.-J. Long, Y. Hu, L. Cheng, A.-Q. Chen, R.-Q. Yu, Rapid identification and quantification of cheaper vegetable oil adulteration in camellia oil by using excitation-emission matrix fluorescence spectroscopy combined with chemometrics. Food Chem. 293, 348–357 (2019). https://doi.org/10.1016/j.foodchem.2019.04.109

    Article  CAS  PubMed  Google Scholar 

  25. Z. Pan, R.H. Li, Y.Y. Cui, X.J. Wu, Y.Y. Zhang, Y.T. Wang, A simple and quick method to detect adulterated sesame oil using 3D fluorescence spectra. Spectrochim. Acta. A 245, 118948 (2021)

    Article  CAS  Google Scholar 

  26. F. Guimet, J. Ferré, R. Boqué, Rapid detection of olive–pomace oil adulteration in extra virgin olive oils from the protected denomination of origin “Siurana” using excitation–emission fluorescence spectroscopy and three-way methods of analysis. Anal. Chim. Acta 544(1–2), 143–152 (2005). https://doi.org/10.1016/j.aca.2005.02.013

    Article  CAS  Google Scholar 

  27. A.-L. **a, H.-L. Wu, S.-H. Zhu, Q.-J. Han, Y. Zhang, R.-Q. Yu, Determination of psoralen in human plasma using excitation-emission matrix fluorescence coupled to second-order calibration. Anal. Sci. 24(9), 1171–1176 (2008). https://doi.org/10.2116/analsci.24.1171

    Article  CAS  PubMed  Google Scholar 

  28. T. Cover, P. Hart, Nearest neighbor pattern classification. IEEE Trans.inf.theory 13(1), 21–27 (1967). https://doi.org/10.1109/TIT.1967.1053964

  29. D. Ballabio, V. Consonni, Classification tools in chemistry. Part 1: linear models. PLS-DA Anal. Methods 5(16), 3790–3798 (2013). https://doi.org/10.1039/c3ay40582f

    Article  CAS  Google Scholar 

  30. S.S. Ouertani, G. Mazerolles, J. Boccard, S. Rudaz, M. Hanafi, Multi-way PLS for discrimination: compact form equivalent to the tri-linear PLS2 procedure and its monotony convergence. Chemometr. Intell. Lab. Syst. 133, 25–32 (2014). https://doi.org/10.1016/j.chemolab.2014.01.015

    Article  CAS  Google Scholar 

  31. R. Bro, Multiway calibration. multilinear PLS. J. Chemometr. 10(1), 47–61 (1996). https://doi.org/10.1002/(SICI)1099-128X(199601)10:1%3c47::AID-CEM400%3e3.0.CO;2-C

    Article  CAS  Google Scholar 

  32. M. Bahram, R. Bro, C. Stedmon, A. Afkhami, Handling of Rayleigh and Raman scatter for PARAFAC modeling of fluorescence data using interpolation. J. Chemometr. 20(3–4), 99–105 (2006). https://doi.org/10.1002/cem.978

    Article  CAS  Google Scholar 

  33. E. Sikorska, A. Gliszczyńska-Świgło, I. Khmelinskii, M. Sikorski, Synchronous fluorescence spectroscopy of edible vegetable oils. Quantification of tocopherols. J. Agric. Food Chem. 53(18), 6988–6994 (2005). https://doi.org/10.1021/jf0507285

    Article  CAS  PubMed  Google Scholar 

  34. E. Sikorska, A. Romaniuk, I. Khmelinskii, R. Herance, J. Bourdelande, M. Sikorski, J. Kozioł, Characterization of edible oils using total luminescence spectroscopy. J. Fluoresc. 14(1), 25–35 (2004). https://doi.org/10.1023/B:JOFL.0000014656.75245.62

    Article  CAS  PubMed  Google Scholar 

  35. K. Magalhães, A. Caires, M. Silva, G. Alcantara, S. Oliveira, Endogenous fluorescence of biodiesel and products thereof: Investigation of the molecules responsible for this effect. Fuel 119, 120–128 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the project Outstanding Young Talent of Zhuhai Health and the National Natural Science Foundation of China (Grant No. 22174036 and 21775039) for financial supports.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: YZ, H-LW; methodology: H-LW, A-QC; formal analysis and investigation: YZ, A-QC, X-ZW; writing—original draft preparation: YZ, M-YD; writing—review and editing: YZ, M-YD, A-QC, H-LW, TW; funding acquisition: YZ, H-LW; resources: TW; supervision: R-QY.

Corresponding author

Correspondence to Hai-Long Wu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

The authors declare that this study did not involve human or animal subjects, and human and animal testing were unnecessary in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wu, HL., Chen, AQ. et al. Combination of excitation-emission matrix fluorescence spectroscopy and chemometric methods for the rapid identification of cheaper vegetable oil adulterated in walnut oil. Food Measure 16, 4514–4525 (2022). https://doi.org/10.1007/s11694-022-01536-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01536-6

Keywords

Navigation