Log in

Acetyl salicylic acid attenuates cardiac hypertrophy through Wnt signaling

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Ventricular hypertrophy is a powerful and independent predictor of cardiovascular morbid events. The vascular properties of low-dose acetyl salicylic acid (aspirin) provide cardiovascular benefits through the irreversible inhibition of platelet cyclooxygenase 1; however, the possible anti-hypertrophic properties and potential mechanism of aspirin have not been investigated in detail. In this study, healthy wild-type male mice were randomly divided into three groups and subjected to transverse aortic constriction (TAC) or sham operation. The TAC-operated mice were treated with the human equivalent of low-dose aspirin (10 mg·kg–1·d–1); the remaining mice received an equal amount of phosphate buffered saline with 0.65% ethanol, which was used as a vehicle. A cardiomyocyte hypertrophy model induced by angiotensin II (10 nmol·L–1) was treated with the human equivalent of low (10 or 100 μmol·L–1) and high (1000 μmol·L–1) aspirin concentrations in plasma. Changes in the cardiac structure and function were assessed through echocardiography and transmission electron microscopy. Gene expression was determined through RT-PCR and western blot analysis. Results indicated that aspirin treatment abrogated the increased thickness of the left ventricular anterior and posterior walls, the swelling of mitochondria, and the increased surface area in in vivo and in vitro hypertrophy models. Aspirin also normalized the upregulated hypertrophic biomarkers, β-myosin heavy chain (β-MHC), atrial natriuretic peptide (ANP), and b-type natriuretic peptide (BNP). Aspirin efficiently reversed the upregulation of β-catenin and P-Akt expression and the TAC- or ANG II-induced downregulation of GSK-3β. Therefore, low-dose aspirin possesses significant anti-hypertrophic properties at clinically relevant concentrations for anti-thrombotic therapy. The downregulation of β-catenin and Akt may be the underlying signaling mechanism of the effects of aspirin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yusuf S, McKee M. Documenting the global burden of cardiovascular disease: a major achievement but still a work in progress. Circulation 2014; 129(14): 1459–1462

    Article  PubMed  Google Scholar 

  2. Gjesdal O, Bluemke DA, Lima JA. Cardiac remodeling at the population level—risk factors, screening, and outcomes. Nat Rev Cardiol 2011; 8(12): 673–685

    Article  PubMed  Google Scholar 

  3. Lavie CJ, Patel DA, Milani RV, Ventura HO, Shah S, Gilliland Y. Impact of echocardiographic left ventricular geometry on clinical prognosis. Prog Cardiovasc Dis 2014; 57(1): 3–9

    Article  PubMed  Google Scholar 

  4. Antithrombotic Trialists (ATT)’ Collaboration, Baigent C, Blackwell L, Collins R, Emberson J, Godwin J, Peto R, Buring J, Hennekens C, Kearney P, Meade T, Patrono C, Roncaglioni MC, Zanchetti A. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet 2009; 373(9678): 1849–1860

    Article  Google Scholar 

  5. Gaglia MA Jr, Clavijo L. Cardiovascular pharmacology core reviews: aspirin. J Cardiovasc Pharmacol Ther 2013; 18(6): 505–513

    Article  CAS  PubMed  Google Scholar 

  6. Eikelboom J, Hirsh J, Spencer F, Baglin T, Weitz J. Antiplatelet drugs: antithrombotic therapy and prevention of thrombosis. 9th ed. American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012; 141(Suppl 2): e89S–e119S

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Patrono C. Low-dose aspirin in primary prevention: cardioprotection, chemoprevention, both, or neither? Eur Heart J 2013; 34(44): 3403–3411

    Article  CAS  PubMed  Google Scholar 

  8. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 1990; 322(22): 1561–1566

  9. Dovizio M, Tacconelli S, Sostres C, Ricciotti E, Patrignani P. Mechanistic and pharmacological issues of aspirin as an anticancer agent. Pharmaceuticals (Basel) 2012; 5(12): 1346–1371

    Article  CAS  Google Scholar 

  10. Yang Z, Guo L, Liu D, Sun L, Chen H, Deng Q, Liu Y, Yu M, Ma Y, Guo N, Shi M. Acquisition of resistance to trastuzumab in gastric cancer cells is associated with activation of IL-6/STAT3/Jagged-1/ Notch positive feedback loop. Oncotarget 2015; 6(7): 5072–5087

    Article  PubMed Central  PubMed  Google Scholar 

  11. Farag M. Can aspirin and cancer prevention be ageless companions? J Clin Diagn Res 2015; 9(1): XE01–XE03

    Google Scholar 

  12. Bergmann MW. WNT signaling in adult cardiac hypertrophy and remodeling: lessons learned from cardiac development. Circ Res 2010; 107(10): 1198–1208

    Article  CAS  PubMed  Google Scholar 

  13. Lu Z, Hunter T. Wnt-independent ß-catenin transactivation in tumor development. Cell Cycle 2004; 3(5): 571–573

    Article  CAS  PubMed  Google Scholar 

  14. Paikin JS, Eikelboom JW. Aspirin. Circulation 2012; 125(10): e439–e442

    Article  PubMed  Google Scholar 

  15. Mehta SR, Tanguay JF, Eikelboom JW, Jolly SS, Joyner CD, Granger CB, Faxon DP, Rupprecht HJ, Budaj A, Avezum A, Widimsky P, Steg PG, Bassand JP, Montalescot G, Macaya C, Di Pasquale G, Niemela K, Ajani AE, White HD, Chrolavicius S, Gao P, Fox KA, Yusuf S; CURRENT-OASIS 7 trial investigators. Double-dose versus standard-dose clopidogrel and high-dose versus low-dose aspirin in individuals undergoing percutaneous coronary intervention for acute coronary syndromes (CURRENT-OASIS 7): a randomised factorial trial. Lancet 2010; 376(9748): 1233–1243

    Article  CAS  PubMed  Google Scholar 

  16. Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J 2008; 22(3): 659–661

    Article  CAS  PubMed  Google Scholar 

  17. Houser SR, Margulies KB, Murphy AM, Spinale FG, Francis GS, Prabhu SD, Rockman HA, Kass DA, Molkentin JD, Sussman MA, Koch WJ; American Heart Association Council on Basic Cardiovascular Sciences, Council on Clinical Cardiology, and Council on Functional Genomics and Translational Biology. Animal models of heart failure: a scientific statement from the American Heart Association. Circ Res 2012; 111(1): 131–150

    Article  CAS  PubMed  Google Scholar 

  18. Lichte P, Pfeifer R, Kobbe P, Tohidnezhad M, Pufe T, Almahmoud K, Hildebrand F, Pape HC. Inhalative IL-10 treatment after bilateral femoral fractures affect pulmonary inflammation in mice. Ann Anat 2015; 200(5): 73–78

    Article  PubMed  Google Scholar 

  19. Li C, Li X, Gao X, Zhang R, Zhang Y, Liang H, Xu C, Du W, Zhang Y, Liu X, Ma N, Xu Z, Wang L, Chen X, Lu Y, Ju J, Yang B, Shan H. MicroRNA-328 as a regulator of cardiac hypertrophy. Int J Cardiol 2014; 173(2): 268–276

    Article  PubMed  Google Scholar 

  20. Sun B, Huo R, Sheng Y, Li Y, **e X, Chen C, Liu HB, Li N, Li CB, Guo WT, Zhu JX, Yang BF, Dong DL. Bone morphogenetic protein-4 mediates cardiac hypertrophy, apoptosis, and fibrosis in experimentally pathological cardiac hypertrophy. Hypertension 2013; 61(2): 352–360

    Article  CAS  PubMed  Google Scholar 

  21. Rothstein S, Simkins T, Nuñez JL. Response to neonatal anesthesia: effect of sex on anatomical and behavioral outcome. Neuroscience 2008; 152(4): 959–969

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Bochner F, Somogyi AA,Wilson KM. Bioinequivalence of four 100 mg oral aspirin formulations in healthy volunteers. Clin Pharmacokinet 1991; 21(5): 394–399

    Article  CAS  PubMed  Google Scholar 

  23. Rosenkranz B, Frölich JC. Plasma concentrations and anti-platelet effects after low dose acetylsalicylic acid. Prostaglandins Leukot Med 1985; 19(3): 289–300

    Article  CAS  PubMed  Google Scholar 

  24. Hermans H, Swinnen M, Pokreisz P, Caluwe E, Dymarkowski S, Herregods MC, Janssens S, Herijgers P. Murine pressure overload models: a 30-MHz look brings a whole new “sound” into data interpretation. J Appl Physiol (Bethesda, MD: 1985) 2014; 117(5): 563–571

    Article  Google Scholar 

  25. Bode-Böger SM, Böger RH, Schubert M, Frölich JC. Effects of very low dose and enteric-coated acetylsalicylic acid on prostacyclin and thromboxane formation and on bleeding time in healthy subjects. Eur J Clin Pharmacol 1998; 54(9–10): 707–714

    Article  PubMed  Google Scholar 

  26. Zheng Q, Chen P, Xu Z, Li F, Yi XP. Expreßsion and redistribution of ß-catenin in the cardiac myocytes of left ventricle of spontaneously hypertensive rat. J Mol Histol 2013; 44(5): 565–573

    Article  CAS  PubMed  Google Scholar 

  27. Shanmugam P, Valente AJ, Prabhu SD, Venkatesan B, Yoshida T, Delafontaine P, Chandrasekar B. Angiotensin-II type 1 receptor and NOX2 mediate TCF/LEF and CREB dependent WISP1 induction and cardiomyocyte hypertrophy. J Mol Cell Cardiol 2011; 50(6): 928–938

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Fang D, Hawke D, Zheng Y, **a Y, Meisenhelder J, Nika H, Mills GB, Kobayashi R, Hunter T, Lu Z. Phosphorylation of ß-catenin by AKT promotes ß-catenin transcriptional activity. J Biol Chem 2007; 282(15): 11221–11229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Lincová E, Hampl A, Pernicová Z, Starsíchová A, Krcmár P, Machala M, Kozubík A, Soucek K. Multiple defects in negative regulation of the PKB/Akt pathway sensitise human cancer cells to the antiproliferative effect of non-steroidal anti-inflammatory drugs. Biochem Pharmacol 2009; 78(6): 561–572

    Article  PubMed  Google Scholar 

  30. Ferreira Filho C, Abreu LC, Valenti VE, Ferreira M, Meneghini A, Silveira JA, Riera AR, Colombari E, Murad N, Santos-Silva PR, Silva LJ, Vanderlei LC, Carvalho TD, Ferreira C. Anti-hypertensive drugs have different effects on ventricular hypertrophy regression. Clinics (Sao Paulo) 2010; 65(7): 723–728

    Article  Google Scholar 

  31. Bis** E, Wakula P, Poteser M, Heinzel FR. Targeting cardiac hypertrophy: toward a causal heart failure therapy. J Cardiovasc Pharmacol 2014; 64(4): 293–305

    Article  CAS  PubMed  Google Scholar 

  32. Levy D. Left ventricular hypertrophy. Epidemiological insights from the Framingham Heart Study. Drugs 1988; 35(Suppl 5): 1–5

    Google Scholar 

  33. Nagelschmitz J, Blunck M, Kraetzschmar J, Ludwig M,Wensing G, Hohlfeld T. Pharmacokinetics and pharmacodynamics of acetylsalicylic acid after intravenous and oral administration to healthy volunteers. Clin Pharmacol 2014; 6: 51–59

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Wu R, Yin D, Sadekova N, Deschepper CF, de Champlain J, Girouard H. Protective effects of aspirin from cardiac hypertrophy and oxidative stress in cardiomyopathic hamsters. Oxid Med Cell Longev 2012; 2012: 761710

    PubMed Central  PubMed  Google Scholar 

  35. Wu R, Laplante MA, de Champlain J. Prevention of angiotensin IIinduced hypertension, cardiovascular hypertrophy and oxidative stress by acetylsalicylic acid in rats. J Hypertens 2004; 22(4): 793–801

    Article  PubMed  Google Scholar 

  36. Halvorsen S, Andreotti F, ten Berg JM, Cattaneo M, Coccheri S, Marchioli R, Morais J, Verheugt FW, de Caterina R. Aspirin therapy in primary cardiovascular disease prevention: a position paper of the European Society of Cardiology working group on thrombosis. J Am Coll Cardiol 2014; 64(3): 319–327

    Article  CAS  PubMed  Google Scholar 

  37. Bae SK, Seo KA, Jung EJ, Kim HS, Yeo CW, Shon JH, Park KM, Liu KH, Shin JG. Determination of acetylsalicylic acid and its major metabolite, salicylic acid, in human plasma using liquid chromatography- tandem mass spectrometry: application to pharmacokinetic study of Astrix in Korean healthy volunteers. Biomed Chromatogr 2008; 22(6): 590–595

    Article  CAS  PubMed  Google Scholar 

  38. Clarke RJ, Mayo G, Price P, FitzGerald GA. Suppression of thromboxane A2 but not of systemic prostacyclin by controlledrelease aspirin. N Engl J Med 1991; 325(16): 1137–1141

    Article  CAS  PubMed  Google Scholar 

  39. Rubak P, Hardlei TF, Würtz M, Kristensen SD, Hvas AM. Lowdose acetylsalicylic acid therapy monitored with ultra high performance liquid chromatography. Clin Biochem 2013; 46(12): 988–992

    Article  CAS  PubMed  Google Scholar 

  40. Sklepkiewicz P, Shiomi T, Kaur R, Sun J, Kwon S, Mercer B, Bodine P, Schermuly RT, George I, Schulze PC, D'Armiento JM. Loss of secreted frizzled-related protein-1 leads to deterioration of cardiac function in mice and plays a role in human cardiomyopathy. Circ Heart Fail 2015; 8(2): 362–372

    Article  CAS  PubMed  Google Scholar 

  41. Fujishima Y, Maeda N, Matsuda K, Komura N, Hirata A, Mori T, Sekimoto R, Tsushima Y, Nishizawa H, Funahashi T, Shimomura I. Effect of adiponectin on cardiac ß-catenin signaling pathway under angiotensin II infusion. Biochem Biophys Res Commun 2014; 444 (2): 224–229

    Article  CAS  PubMed  Google Scholar 

  42. Aoyagi T, Matsui T. Phosphoinositide-3 kinase signaling in cardiac hypertrophy and heart failure. Curr Pharm Des 2011; 17(18): 1818–1824

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Ellison GM, Waring CD, Vicinanza C, Torella D. Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms. Heart 2012; 98(1): 5–10

    Article  CAS  PubMed  Google Scholar 

  44. Yoshida T, Friehs I, Mummidi S, del Nido PJ, Addulnour-Nakhoul S, Delafontaine P, Valente AJ, Chandrasekar B. Pressure overload induces IL-18 and IL-18R expression, but markedly suppresses IL- 18BP expression in a rabbit model. IL-18 potentiates TNF-a- induced cardiomyocyte death. J Mol Cell Cardiol 2014; 75(10): 141–151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Ishida H, Kogaki S, Narita J, Ichimori H, Nawa N, Okada Y, Takahashi K, Ozono K. LEOPARD-type SHP2 mutant Gln510Glu attenuates cardiomyocyte differentiation and promotes cardiac hypertrophy via dysregulation of Akt/GSK-3ß/ß-catenin signaling. Am J Physiol Heart Circ Physiol 2011; 301(4): H1531–H1539

    Google Scholar 

  46. Askevold ET, Aukrust P, Nymo SH, Lunde IG, Kaasbøll OJ, Aakhus S, Florholmen G, Ohm IK, Strand ME, Attramadal H, Fiane A, Dahl CP, Finsen AV, Vinge LE, Christensen G, Yndestad A, Gullestad L, Latini R, Masson S, Tavazzi L, Ueland T; GISSI-HF Investigators, Ueland T. The cardiokine secreted Frizzled-related protein 3, a modulator of Wnt signalling, in clinical and experimental heart failure. J Intern Med 2014; 275(6): 621–630

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongli Shan or Baofeng Yang.

Additional information

Samuel Chege Gitau and Xuelian Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gitau, S.C., Li, X., Zhao, D. et al. Acetyl salicylic acid attenuates cardiac hypertrophy through Wnt signaling. Front. Med. 9, 444–456 (2015). https://doi.org/10.1007/s11684-015-0421-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-015-0421-z

Keywords

Navigation