Log in

Intrinsic functional connectivity of medial prefrontal cortex predicts the individual moral bias in economic valuation partially through the moral sensitivity trait

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

An individual’s economic valuation of a given object is biased by the moral status of the persons to whom the object is attached. The neural basis for how such “moral bias” occurs, especially how it is maintained in the resting state, are largely unknown. In the current study, we explored this question by correlating the functional connectivity with participants’ behavioral performance measured in a novel task which captured how the economic valuation was influenced by given moral information. Seed-based FC analysis showed that the functional connectivity between the mPFC and the orbital mPFC (omPFC), the mPFC and the precuneus, the mPFC and the left anterior cingulum, were significantly associated with the behavioral index of morality effect on economic valuation. Multivariate machine learning-based regression analysis showed that connections in the mPFC network, as well as in the putamen network could well predict the behavior performance, indicating that this mPFC network and the putamen network were crucial for this moral bias. Our results further revealed that the individuals’ personal trait of moral sensitivity served as a mediator between the rsFC of mPFC network and the behavioral index of morality effect on economic valuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. Neuroimage, 76, 412–427.

    PubMed  PubMed Central  Google Scholar 

  • Bhanji, J. P., & Beer, J. S. (2012). Taking a different perspective: Mindset influences neural regions that represent value and choice. Social Cognitive and Affective Neuroscience, 7, 782–793.

    PubMed  Google Scholar 

  • Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34, 537–541.

    CAS  PubMed  Google Scholar 

  • Brosch, T., Coppin, G., Schwartz, S., & Sander, D. (2012). The importance of actions and the worth of an object: Dissociable neural systems representing core value and economic value. Social Cognitive and Affective Neuroscience, 7, 497–505.

    PubMed  Google Scholar 

  • Caceda, R., James, G. A., Gutman, D. A., & Kilts, C. D. (2015). Organization of intrinsic functional brain connectivity predicts decisions to reciprocate social behavior. Behavioural Brain Research, 292, 478–483.

    PubMed  Google Scholar 

  • Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: A review of its functional anatomy and behavioural correlates. Brain, 129, 564–583.

    PubMed  Google Scholar 

  • Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S., & Petersen, S. E. (2014). Intrinsic and task-evoked network architectures of the human brain. Neuron 83, 238–251.

  • Cole, M. W., Ito, T., Bassett, D. S., & Schultz, D. H. (2016). Activity flow over resting-state networks shapes cognitive task activations. Nature neuroscience 19(12), 1718.

  • Cox, K. M., & Kable, J. W. (2014). BOLD subjective value signals exhibit robust range adaptation. The Journal of Neuroscience, 34, 16533–16543.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crockett, M. J., Siegel, J. Z., Kurth-Nelson, Z., Dayan, P., & Dolan, R. J. (2017). Moral transgressions corrupt neural representations of value. Nat.Neurosci, 20, 879–885.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui, Z., & ong, G. (2018). The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features. NeuroImage., 178, 622–637.

    PubMed  Google Scholar 

  • Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191.

    PubMed  Google Scholar 

  • Fourie, M. M., Thomas, K. G., Amodio, D. M., Warton, C. M., & Meintjes, E. M. (2014). Neural correlates of experienced moral emotion: An fMRI investigation of emotion in response to prejudice feedback. Social Neuroscience, 9, 203–218.

    PubMed  Google Scholar 

  • Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews. Neuroscience, 8, 700–711.

    CAS  PubMed  Google Scholar 

  • Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S., & Turner, R. (1996). Movement-related effects in fMRI time-series. Magnetic Resonance in Medicine, 35, 346–355.

    CAS  PubMed  Google Scholar 

  • Golland, P., & Fischl, B. (2003). Permutation tests for classification: Towards statistical significance in image-based studies. Inf. Process Med. Imaging, 18, 330–341.

    PubMed  Google Scholar 

  • Greene, J. D., Nystrom, L. E., Engell, A. D., Darley, J. M., & Cohen, J. D. (2004). The neural bases of cognitive conflict and control in moral judgment. Neuron, 44, 389–400.

    CAS  PubMed  Google Scholar 

  • Haidt, J. (2003). Elevation and the positive psychology of morality. In J. H. C. L. Keyes (Ed.), Flourishing: Positive psychology and the LifeWell-lived (pp. 275–289). Washington, DC: Am.Psychol. Assoc.

    Google Scholar 

  • Han, H. (2017). Neural correlates of moral sensitivity and moral judgment associated with brain circuitries of selfhood: A meta-analysis. Journal of Moral Education, 46, 97–113.

    Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. H. (2001). The elements of statistical learning: Data mining, inference, and prediction. New York: Springer-Verlag.

    Google Scholar 

  • Hood, B. M., Itajkura, S., Gjersoe, N. L., Byers, A., & Donnelly, K. (2011). Moral contagion attitudes towards potential organ transplants in British and Japanese adults. Journal of Cognition and Culture, 11, 269–286.

    Google Scholar 

  • Huang, F. F., Yang, Q., Zhang, J., Zhang, Q. H., Khoshnood, K., & Zhang, J. P. (2016). Cross-cultural validation of the moral sensitivity questionnaire-revised Chinese version. Nursing Ethics, 23, 784–793.

    PubMed  Google Scholar 

  • Jung, W. H., Prehn, K., Fang, Z., Korczykowski, M., Kable, J. W., Rao, H., et al. (2016). Moral competence and brain connectivity: A resting-state fMRI study. Neuroimage., 141, 408–415.

    PubMed  PubMed Central  Google Scholar 

  • Korponay, C., Pujara, M., Deming, P., Philippi, C., Decety, J., Kosson, D. S., et al. (2017). Impulsive-antisocial dimension of psychopathy linked to enlargement and abnormal functional connectivity of the striatum. Biol. Psychiatry Cogn Neurosci. Neuroimaging, 2, 149–157.

    PubMed  PubMed Central  Google Scholar 

  • Kramer, T., & lock, L. (2011). Nonconscious effects of peculiar beliefs on consumer psychology and choice. Journal of Consumer Psychology, 21, 101–111.

    Google Scholar 

  • Kuss, K., Falk, A., Trautner, P., Montag, C., Weber, B., & Fliessbach, K. (2015). Neuronal correlates of social decision making are influenced by social value orientation-an fMRI study. Frontiers in Behavioral Neuroscience, 9, 40.

    PubMed  PubMed Central  Google Scholar 

  • Libedinsky, C., Smith, D. V., Teng, C. S., Namburi, P., Chen, V. W., Huettel, S. A., et al. (2011). Sleep deprivation alters valuation signals in the ventromedial prefrontal cortex. Frontiers in Behavioral Neuroscience, 5, 70.

    PubMed  PubMed Central  Google Scholar 

  • Liu, J., ** good and evil in the Mind. New York: Guilford.

    Google Scholar 

  • Miller, R. M. & Cushman, F. A. (2018). Moral values and motivations: How special are they? In in K. Gray & J. Graham (eds) (Ed.), The atlas of moral psychology: Map** good and evil .

  • Molenberghs, P., Gapp, J., Wang, B., Louis, W. R., & Decety, J. (2016). Increased moral sensitivity for outgroup perpetrators harming Ingroup members. Cerebral Cortex, 26, 225–233.

    PubMed  Google Scholar 

  • Moll, J., de Oliveira-Souza, R., Eslinger, P. J., Bramati, I. E., Mourao-Miranda, J., Andreiuolo, P. A., et al. (2002). The neural correlates of moral sensitivity: A functional magnetic resonance imaging investigation of basic and moral emotions. The Journal of Neuroscience., 22, 2730–2736.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy, K., & Fox, M. D. (2017). Towards a consensus regarding global signal regression for resting state functional connectivity MRI. Neuroimage, 154, 169–173.

    PubMed  PubMed Central  Google Scholar 

  • Newman, G. E., & Bloom, P. (2014). Physical contact influences how much people pay at celebrity auctions. Proceedings of the National Academy of Sciences of the United States of America, 111, 3705–3708.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Padoa-Schioppa, C. (2007). Orbitofrontal cortex and the computation of economic value. Annals of the New York Academy of Sciences, 1121, 232–253.

    PubMed  Google Scholar 

  • Park, S. Q., Kahnt, T., Rieskamp, J., & Heekeren, H. R. (2011). Neurobiology of value integration: When value impacts valuation. J.Neurosci., 31, 9307–9314.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parkinson, C., Sinnott-Armstrong, W., Koralus, P. E., Mendelovici, A., McGeer, V., & Wheatley, T. (2011). Is morality unified? Evidence that distinct neural systems underlie moral judgments of harm, dishonesty, and disgust. J. Cognitive Neuroscience, 23, 3162–3180.

    Google Scholar 

  • Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage., 59, 2142–2154.

    PubMed  Google Scholar 

  • Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40, 879–891.

    PubMed  Google Scholar 

  • Rademacher, L., Krach, S., Kohls, G., Irmak, A., Grunder, G., & Spreckelmeyer, K. N. (2010). Dissociation of neural networks for anticipation and consumption of monetary and social rewards. Neuroimage., 49, 3276–3285.

    PubMed  Google Scholar 

  • Rudorf, S., Baumgartner, T., Markett, S., Schmelz, K., Wiest, R., Fischbacher, U., et al. (2018). Intrinsic connectivity networks underlying individual differences in control-averse behavior. Human Brain Map**, 39, 4857–4869.

    PubMed  PubMed Central  Google Scholar 

  • Russell, P. S., & Giner-Sorolla, R. (2013). Bodily moral disgust: What it is, how it is different from anger, and why it is an unreasoned emotion. Psychological Bulletin., 139, 328–351.

    PubMed  Google Scholar 

  • Sambataro, F., Dimalta, S., Di, G. A., Taurisano, P., Blasi, G., Scarabino, T., et al. (2006). Preferential responses in amygdala and insula during presentation of facial contempt and disgust. European Journal of Neurology, 24, 2355–2362.

    Google Scholar 

  • Shenhav, A., & Greene, J. D. (2014). Integrative moral judgment: Dissociating the roles of the amygdala and ventromedial prefrontal cortex. J.Neurosci., 34, 4741–4749.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spreckelmeyer, K. N., Krach, S., Kohls, G., Rademacher, L., Irmak, A., Konrad, K., et al. (2009). Anticipation of monetary and social reward differently activates mesolimbic brain structures in men and women. Social Cognitive and Affective Neuroscience, 4, 158–165.

    PubMed  PubMed Central  Google Scholar 

  • Thielscher, A., & Pessoa, L. (2007). Neural correlates of perceptual choice and decision making during fear-disgust discrimination. The Journal of Neuroscience, 27, 2908–2917.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15, 273–289.

    CAS  PubMed  Google Scholar 

  • Utevsky, A. V., Smith, D. V., & Huettel, S. A. (2014). Precuneus is a functional core of the default-mode network. J.Neurosci., 34, 932–940.

    CAS  PubMed  PubMed Central  Google Scholar 

  • White, S. F., Zhao, H., Leong, K. K., Smetana, J. G., Nucci, L. P., & Blair, R. J. R. (2017). Neural correlates of conventional and harm/welfare-based moral decision-making. Cognitive, Affective, & Behavioral Neuroscience, 17, 1114–1128.

    Google Scholar 

  • Winecoff, A., Clithero, J. A., Carter, R. M., Bergman, S. R., Wang, L., & Huettel, S. A. (2013). Ventromedial prefrontal cortex encodes emotional value. The Journal of Neuroscience, 33, 11032–11039.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winston, J. S., Vlaev, I., Seymour, B., Chater, N., & Dolan, R. J. (2014). Relative valuation of pain in human orbitofrontal cortex. J.Neurosci., 34, 14526–14535.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, C., & Zang, Y. (2010). DPARSF: A MATLAB toolbox for "pipeline" data analysis of resting-state fMRI. Frontiers in Systems Neuroscience, 4, 13.

    Google Scholar 

  • Yan, C. G., Cheung, B., Kelly, C., Colcombe, S., Craddock, R. C., Di, M. A., et al. (2013). A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage, 76, 183–201.

    PubMed  PubMed Central  Google Scholar 

  • Yu, R., Calder, A. J., & Mobbs, D. (2014). Overlap** and distinct representations of advantageous and disadvantageous inequality. Human Brain Map**, 35, 3290–3301.

    PubMed  Google Scholar 

  • Zeki, S., & Romaya, J. P. (2008). Neural correlates of hate. PLoS One, 3, e3556.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was by the National Natural Science Foundation of China (no.31871109; no.31530031).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions: F.C. and Y.L. designed the research; J.L and B.Y collected and analyzed data; J.L. and F.C wrote the paper. The authors declare no competing financial interests.

Corresponding author

Correspondence to Fang Cui.

Ethics declarations

Conflict of interest

No.

Ethical approval

The study was conducted according to the ethical guidelines and principles of the Declaration of Helsinki and was approved by the Medical Ethical Committee of Medical School in Shenzhen University, Shenzhen, China.

Informed consent

All participants provided written informed consent after they fully understood the procedures.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1058 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Yuan, B., Luo, Yj. et al. Intrinsic functional connectivity of medial prefrontal cortex predicts the individual moral bias in economic valuation partially through the moral sensitivity trait. Brain Imaging and Behavior 14, 2024–2036 (2020). https://doi.org/10.1007/s11682-019-00152-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-019-00152-1

Keywords

Navigation