Log in

Nitriding Effect on HVAF FeMnCrSi Coating

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Plasma nitriding is an appropriate way to improve the surface hardness of materials and prevent wear. Using plasma nitriding can result in a unique combination of bulk and surface properties. Some studies indicate defects, and residual stresses in the crystal lattice are some of the most influential factors for nitrogen diffusion during the nitriding process. As thermally sprayed coatings exhibit a high degree of deformation due to particle impact, a high degree of defects and stress is expected. This work aimed to study the effect of the glow discharge plasma nitriding on FeMnCrSiNi coating deposited by the HVAF process. The formation of expanded austenite and chromium nitride on the HVAF coating was observed, followed by a significant hardness increase. The nitride coating showed improvements in wear resistance and coefficient of friction. The coating after heat treatment showed a higher wear rate, showing the significant role of residual stress for this coating. Therefore, surface nitriding has the potential to increase the lifespan of the coating. In addition, the formation of chromium nitride on the surface decreased the corrosion resistance of the coating in 3.5wt.%NaCl solution, making it more prone to general and pitting corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. W. Guo, Y. Wu, J. Zhang, S. Hong, G. Li, G. Ying, J. Guo, and Y. Qin, Fabrication and Characterization of Thermal-Sprayed Fe-Based Amorphous/Nanocrystalline Composite Coatings: An Overview, J. Therm. Spray Technol., 2014, 23(7), p 1157-1180.

    Article  CAS  Google Scholar 

  2. W. Yang, C.D. Nicolet, P.D. Norrlund, U.P. Lundin, J. Yang, W. Guo, W. Zeng, C. Wang, L. Saarinen, P. Norrlund, J. Chen, Y. Teng, T. Yi, Z. Wei, R. Tang, H. Wang, C.Y. Chung, U. Lundin, J. Bladh, A. Witt, and B. Smith, Hydropower Plants and Power Systems: Dynamic Processes and Control for Stable and Efficient Operation. (2017)

  3. R.Q. Guo, C. Zhang, Q. Chen, Y. Yang, N. Li, and L. Liu, Study of Structure and Corrosion Resistance of Fe-Based Amorphous Coatings Prepared by HVAF and HVOF, Corros. Sci., 2011, 53(7), p 2351-2356.

    Article  CAS  Google Scholar 

  4. L. Jacobs, M.M. Hyland, and M. De Bonte, Comparative Study of WC-Cermet Coatings Sprayed via the HVOF and the HVAF Process, J. Therm. Spray Technol., 1998, 7(2), p 213-218.

    Article  CAS  Google Scholar 

  5. G. Bolelli, L.M. Berger, T. Börner, H. Koivuluoto, L. Lusvarghi, C. Lyphout, N. Markocsan, V. Matikainen, P. Nylén, P. Sassatelli, R. Trache, and P. Vuoristo, Tribology of HVOF-and HVAF-Sprayed WC-10Co4Cr Hardmetal Coatings: A Comparative Assessment, Surf. Coatings Technol., 2015, 265, p 125-144. https://doi.org/10.1016/j.surfcoat.2015.01.048

    Article  CAS  Google Scholar 

  6. V. Matikainen, G. Bolelli, H. Koivuluoto, P. Sassatelli, L. Lusvarghi, and P. Vuoristo, Sliding Wear Behaviour of HVOF and HVAF Sprayed Cr3C2-Based Coatings, Wear, 2017, 388-389, p 57-71. https://doi.org/10.1016/j.wear.2017.04.001

    Article  CAS  Google Scholar 

  7. E. Sadeghimeresht, N. Markocsan, and P. Nylén, A Comparative Study on Ni-Based Coatings Prepared by HVAF, HVOF, and APS Methods for Corrosion Protection Applications, J. Therm. Spray Technol., 2016, 25(8), p 1604-1616.

    Article  CAS  Google Scholar 

  8. T. Varis, T. Suhonen, J. Laakso, M. Jokipii, and P. Vuoristo, Evaluation of Residual Stresses and Their Influence on Cavitation Erosion Resistance of High Kinetic HVOF and HVAF-Sprayed WC-CoCr Coatings, J. Therm. Spray Technol., 2020, 29(6), p 1365-1381. https://doi.org/10.1007/s11666-020-01037-2

    Article  CAS  Google Scholar 

  9. J.A. Browning, Viewing the Future of High-Velocity Oxyfuel (HVOF) and High-Velocity Air Fuel (HVAF) Thermal Spraying, J. Therm. Spray Technol., 1999, 8(3), p 1.

    Google Scholar 

  10. W. Luo, U. Selvadurai, and W. Tillmann, Effect of Residual Stress on the Wear Resistance of Thermal Spray Coatings, J. Therm. Spray Technol., 2016, 25(1-2), p 321-330.

    Article  CAS  Google Scholar 

  11. Y. Sun, Kinetics of Layer Growth during Plasma Nitriding of Nickel Based Alloy Inconel 600, J. Alloys Compd., 2003, 351(1-2), p 241-247.

    Article  CAS  Google Scholar 

  12. F. Kahraman and S. Karadeniz, Characterization and Wear Behavior of Plasma Nitrided Nickel Based Dental Alloy, Plasma Chem. Plasma Process., 2011, 31(4), p 595-604.

    Article  CAS  Google Scholar 

  13. K.M. Eliasen, T.L. Christiansen, and M.A.J. Somers, Low Temperature Gaseous Nitriding of Ni Based Superalloys, Surf. Eng., 2009, 26(4), p 248-255.

    Article  Google Scholar 

  14. F. Meng and I. Baker, Nitriding of a High Entropy FeNiMnAlCr Alloy, J. Alloys Compd., 2015, 645, p 376-381. https://doi.org/10.1016/j.jallcom.2015.05.021

    Article  CAS  Google Scholar 

  15. D.L. Williamson, O. Ozturk, R. Wei, and P.J. Wilbur, Metastable Phase Formation and Enhanced Diffusion in f.c.c. Alloys under High Dose, High Flux Nitrogen Implantation at High and Low Ion Energies, Surf. Coatings Technol., 1994, 65(1-3), p 15-23.

    Article  CAS  Google Scholar 

  16. H. Dong, S-Phase Surface Engineering of Fe-Cr, Co-Cr and Ni-Cr Alloys, Int. Mater. Rev., 2010, 55(2), p 65-98.

    Article  CAS  Google Scholar 

  17. W.R. de Oliveira, B.C.E.S. Kurelo, D.G. Ditzel, F.C. Serbena, C.E. Foerster, and G.B. de Souza, On the S-Phase Formation and the Balanced Plasma Nitriding of Austenitic-Ferritic Super Duplex Stainless Steel, Appl. Surf. Sci., 2018, 434, p 1161-1174.

    Article  Google Scholar 

  18. G.B. de Souza, W.R. de Oliveira, R.F. Chuproski, G.M. Valadão, O.M. Cintho, E.C.F. de Souza, and F.C. Serbena, Symmetry between the Anisotropic N Behavior in the Lattice under High Pressures and the Formation of Expanded Austenite, J. Alloys Compd., 2021, 871, p 159509.

    Article  Google Scholar 

  19. L.L. Silveira, A.G.M. Pukasiewicz, D.J.M. de Aguiar, A.J. Zara, and S. Björklund, Study of the Corrosion and Cavitation Resistance of HVOF and HVAF FeCrMnSiNi and FeCrMnSiB Coatings, Surf. Coat. Technol., 2019, 374, p 910-922.

    Article  CAS  Google Scholar 

  20. A. Milanti, V. Matikainen, G. Bolelli, H. Koivuluoto, L. Lusvarghi, and P. Vuoristo, Microstructure and Sliding Wear Behavior of Fe-Based Coatings Manufactured with HVOF and HVAF Thermal Spray Processes, J. Therm. Spray Technol., 2016, 25(5), p 1040-1055.

    Article  CAS  Google Scholar 

  21. E. Sadeghimeresht, N. Markocsan, and P. Nylén, Microstructural Characteristics and Corrosion Behavior of HVAF-and HVOF-Sprayed Fe-Based Coatings, Surf. Coatings Technol., 2017, 318, p 365-373.

    Article  CAS  Google Scholar 

  22. T. Varis, A. Mäkelä, T. Suhonen, J. Laurila, and P. Vuoristo, Integrity of APS, HVOF and HVAF Sprayed NiCr and NiCrBSi Coatings Based on the Tensile Stress-Strain Response, Surf. Coatings Technol., 2022, 2023, p 452.

    Google Scholar 

  23. Y. Li, D.S. Martín, J. Wang, C. Wang, and W. Xu, A Review of the Thermal Stability of Metastable Austenite in Steels: Martensite Formation, J. Mater. Sci. Technol., 2021, 91, p 200-214. https://doi.org/10.1016/j.jmst.2021.03.020

    Article  CAS  Google Scholar 

  24. H. Hotz, B. Kirsch, T. Zhu, M. Smaga, T. Beck, and J.C. Aurich, Surface Layer Hardening of Metastable Austenitic Steel-Comparison of Shot Peening and Cryogenic Turning, J. Mater. Res. Technol., 2020, 9(6), p 16410-16422. https://doi.org/10.1016/j.jmrt.2020.11.109

    Article  CAS  Google Scholar 

  25. D.L. Williamson, W. Li, R. Wei, and P.J. Wilbur, Solid Solution Strengthening of Stainless Steel Surface Layers by Rapid, High-Dose, Elevated Temperature Nitrogen Ion Implantation, Mater. Lett., 1990, 9(9), p 302-308.

    Article  CAS  Google Scholar 

  26. S. Mändl, J. Lutz, C. Díaz, J.W. Gerlach, and J.A. García, Reprint of Influence of Reduced Current Density on Diffusion and Phase Formation during PIII Nitriding of Austenitic Stainless Steel and CoCr Alloys, Surf. Coatings Technol., 2014, 256, p 78-84.

    Article  Google Scholar 

  27. A.P. Tschiptschin, A.S. Nishikawa, L.B. Varela, and C.E. Pinedo, Thermal Stability of Expanded Austenite Formed on a DC Plasma Nitrided 316L Austenitic Stainless Steel, Thin Solid Films, 2017, 644(June), p 156-165.

    Article  CAS  Google Scholar 

  28. S. Mändl, R. Dunkel, D. Hirsch, and D. Manova, Intermediate Stages of CrN Precipitation during PIII Nitriding of Austenitic Stainless Steel, Surf. Coat. Technol., 2014, 258, p 722-726.

    Article  Google Scholar 

  29. W.R. de Oliveira, Influência Dos Parâmetros De Implantação Iônica Por Imersão Em Plasma Na Eficiência Da Nitretação Do Aço Inoxidável Super Duplex. Universidade Estadual De Ponta Grossa. (2016)

  30. T. Moskalioviene, A. Galdikas, J.P. Rivière, and L. Pichon, Modeling of Nitrogen Penetration in Polycrystalline AISI 316L Austenitic Stainless Steel during Plasma Nitriding, Surf. Coatings Technol., 2011, 205(10), p 3301-3306.

    Article  CAS  Google Scholar 

  31. T. Moskalioviene and A. Galdikas, Kinetic Model of Anisotropic Stress Assisted Diffusion of Nitrogen in Nitrided Austenitic Stainless Steel, Surf. Coatings Technol., 2018, 366, p 277-285.

    Article  Google Scholar 

  32. K. Yang, C. Chen, G. Xu, Z. Jiang, S. Zhang, and X. Liu, HVOF Sprayed Ni-Mo Coatings Improved by Annealing Treatment: Microstructure Characterization, Corrosion Resistance to HCl and Corrosion Mechanisms, J. Mater. Res. Technol., 2022, 19, p 1906-1921. https://doi.org/10.1016/j.jmrt.2022.05.181

    Article  CAS  Google Scholar 

  33. T. Wang and F. Ye, The Elevated-Temperature Wear Behavior Evolution of HVOF Sprayed Tungsten Carbide Coatings: Respond to Heat Treatment, Int. J. Refract. Met. Hard Mater., 2018, 71, p 92-100. https://doi.org/10.1016/j.ijrmhm.2017.11.007

    Article  CAS  Google Scholar 

  34. D. Bhadraiah, C. Nouveau, B. Veeraswami, and K.R.M. Rao, Plasma Based Nitriding of Tool Steel for the Enhancement of Hardness, Mater. Today Proc., 2021, 46, p 940-943. https://doi.org/10.1016/j.matpr.2021.01.185

    Article  CAS  Google Scholar 

  35. K.R.M. Rao, C. Nouveau, and K. Trinadh, Low Temperature Plasma Nitriding of Low Alloy Steel for the Enhancement of Hardness, Mater. Today Proc., 2019, 17, p 26-33. https://doi.org/10.1016/j.matpr.2019.06.397

    Article  CAS  Google Scholar 

  36. D. Bhadraiah, C. Nouveau, B. Veeraswami, S. Lakshman, and K.R.M. Rao, Enhancement of Hardness of Low Alloy Steel after Low Temperature Plasma Nitriding, Mater. Today Proc., 2021, 46, p 689-691. https://doi.org/10.1016/j.matpr.2020.11.1004

    Article  CAS  Google Scholar 

  37. M. Oksa and J. Metsäjoki, Optimizing NiCr and FeCr HVOF Coating Structures for High Temperature Corrosion Protection Applications, J. Therm. Spray Technol., 2014, 24(3), p 436-453.

    Article  Google Scholar 

  38. G.D. Mahan, Condensed Matter in a Nutshell, n.d

  39. B.C.E. SchibicheskiKurelo, W.R. de Oliveira, F.C. Serbena, and G.B. de Souza, Surface Mechanics and Wear Resistance of Supermartensitic Stainless Steel Nitrided by Plasma Immersion Ion Implantation, Surf. Coat. Technol., 2018, 353, p 199-209.

    Article  CAS  Google Scholar 

  40. G. Bolelli and L. Lusvarghi, Heat Treatment Effects on the Tribological Performance of HVOF Sprayed Co-Mo-Cr-Si Coatings, Proc. Int. Therm. Spray Conf., 2006, 15(December), p 802-810.

    CAS  Google Scholar 

  41. H. Guo, X. Zhao, Y. An, H. Zhou, P. Yan, Z. Wu, and J. Chen, Fabrication and Effect of Heat Treatment on the Microstructure and Tribology Properties of HVOF-Sprayed CoMoCrSi Coating, J. Mater. Sci., 2021, 56(21), p 12423-12437. https://doi.org/10.1007/s10853-021-05986-z

    Article  CAS  Google Scholar 

  42. G. Bolelli and L. Lusvarghi, Tribological Properties of HVOF As-Sprayed and Heat Treated Co-Mo-Cr-Si Coatings, Tribol. Lett., 2007, 25(1), p 43-54.

    Article  CAS  Google Scholar 

  43. M. Isakhani-Zakaria, S.R. Allahkaram, and H.A. Ramezani-Varzaneh, Evaluation of Corrosion Behaviour of Pb-Co3O4 Electrodeposited Coating Using EIS Method, Corros. Sci., 2019, 157, p 472-480. https://doi.org/10.1016/j.corsci.2019.06.023

    Article  CAS  Google Scholar 

  44. M.M. Verdian, K. Raeissi, and M. Salehi, Corrosion Performance of HVOF and APS Thermally Sprayed NiTi Intermetallic Coatings in 3.5% NaCl Solution, Corros. Sci., 2010, 52(3), p 1052-1059. https://doi.org/10.1016/j.corsci.2009.11.034

    Article  CAS  Google Scholar 

  45. S. Hong, Y. Wu, W. Gao, J. Zhang, Y. Zheng, and Y. Zheng, Slurry Erosion-Corrosion Resistance and Microbial Corrosion Electrochemical Characteristics of HVOF Sprayed WC-10Co-4Cr Coating for Offshore Hydraulic Machinery, Int. J. Refract. Met. Hard Mater., 2018, 74, p 7-13. https://doi.org/10.1016/j.ijrmhm.2018.02.019

    Article  CAS  Google Scholar 

  46. J. Du, J. Zhang, J. Xu, and C. Zhang, Cavitation-Corrosion Behaviors of HVOF Sprayed WC-25WB-10Co-5NiCr and MoB-25NiCr Coatings, Ceram. Int., 2020, 46(13), p 21707-21718. https://doi.org/10.1016/j.ceramint.2020.05.279

    Article  CAS  Google Scholar 

  47. F. Mindivan and H. Mindivan, Surface Properties and Tribocorrosion Behaviour of a Thermal Sprayed Martensitic Stainless Steel Coating after Pulsed Plasma Nitriding Process, Adv. Mater. Process. Technol., 2016, 2(4), p 514-526. https://doi.org/10.1080/2374068X.2016.1247232

    Article  Google Scholar 

  48. M. Godec, C. Donik, A. Kocijan, B. Podgornik, and D.A. SkobirBalantič, Effect of Post-Treated Low-Temperature Plasma Nitriding on the Wear and Corrosion Resistance of 316L Stainless Steel Manufactured by Laser Powder-Bed Fusion, Addit. Manuf., 2020, 32, p 101000.

    CAS  Google Scholar 

  49. S. Adachi and N. Ueda, Formation of Expanded Austenite on a Cold-Sprayed AISI 316L Coating by Low-Temperature Plasma Nitriding, J. Therm. Spray Technol., 2015, 24(8), p 1399-1407.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Fundep Rota 2030 Project “Recovery of Molds for Aluminum High Pressure Casting by Advanced Manufacturing Techniques,” for funding the research, partnership agreement FUNDEP / UTFPR / UEPG n° 27194.01.01/2020.02-00, and for CLABMU/UEPG for some of the experimental analysis. C2MMa of UTFPR and C-LabMu UEPG for the measurements performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anderson Geraldo Marenda Pukasiewicz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is an invited paper selected from presentations at the 2022 International Thermal Spray Conference, held May 4-6, 2022 in Vienna, Austria, and has been expanded from the original presentation. The issue was organized by André McDonald, University of Alberta (Lead Editor); Yuk-Chiu Lau, General Electric Power; Fardad Azarmi, North Dakota State University; Filofteia-Laura Toma, Fraunhofer Institute for Material and Beam Technology; Heli Koivuluoto, Tampere University; Jan Cizek, Institute of Plasma Physics, Czech Academy of Sciences; Emine Bakan, Forschungszentrum Jülich GmbH; Šárka Houdková, University of West Bohemia; and Hua Li, Ningbo Institute of Materials Technology and Engineering, CAS.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, W.R., Mayer, A.R., de Souza, G.B. et al. Nitriding Effect on HVAF FeMnCrSi Coating. J Therm Spray Tech 32, 737–750 (2023). https://doi.org/10.1007/s11666-023-01557-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-023-01557-7

Keywords

Navigation