Log in

Calcium-Magnesium-Aluminum-Silicate (CMAS) Corrosion Resistance of Y-Yb-Gd-Stabilized Zirconia Thermal Barrier Coatings

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

It was published that zirconate coatings containing Gd/Yb and yttria-stabilized zirconia (YSZ) coatings with high Y content had good calcium-magnesium-aluminum-silicate (CMAS) corrosion resistance. However, there are few reports on CMAS resistance of zirconia-based thermal barrier coatings (TBCs) doped with Y, Gd and Yb. This article intends to explore the role of Y, Gd and Yb in resisting CMAS corrosion of zirconia-based TBCs. The purpose is to optimize the rare earth modification of zirconia-based TBCs. 8YSZ and ZrO2-9.5Y2O3-5.6Yb2O3-5.2Gd2O3 free-standing TBCs were produced by air plasma spraying (APS) with commercial powders. The CMAS corrosion behavior and failure mechanism of these coatings were studied by heat treatment at 1350 °C. The microstructure and composition were characterized. The results showed the CMAS deposited on the surface of 8YSZ/YSZ-Yb-Gd coatings gradually penetrated into coatings. ZrSiO4 and m-ZrO2 were observed in the shallow layer of coatings. The diffusion rate of Y3+ in coatings into CMAS was greater than that of Gd3+ and Yb3+. Compared with YSZ coatings, CMAS penetrated deeper in YSZ-Yb-Gd coatings after the same corrosion time. The spallation of YSZ-Yb-Gd coatings occurred earlier than 8YSZ. In general, adding a small amount of Yb and Gd did not improve the CMAS resistance of YSZ TBCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Y.Z. Liu and X.B. Hu, Segregation and Microstructural Evolution at Interfaces of Atmospheric Plasma Sprayed Thermal Barrier Coatings during Thermal Cycling, J. Alloys Compd., 2020, https://doi.org/10.1016/j.jallcom.2019.153026

    Article  Google Scholar 

  2. U. Schulz, C. Leyens, K. Fritscher, M. Peters, B. Saruhan-Brings, O. Lavigne, J.M. Dorvaux, M. Poulain, R. Mévrel, and M. Caliez, Some Recent Trends in Research and Technology of Advanced Thermal Barrier Coatings, Aerosp. Sci. Technol., 2003, 7(1), p 73-80. https://doi.org/10.1016/S1270-9638(02)00003-2

    Article  CAS  Google Scholar 

  3. D.G. Bogard and K.A. Thole, Gas Turbine Film Cooling, J. Propuls. Power., 2006, 22(2), p 249-270. https://doi.org/10.2514/1.18034

    Article  Google Scholar 

  4. S.M. Meier, D.K. Gupta, and K.D. Sheffler, Ceramic Thermal Barrier Coatings for Commercial Gas Turbine Engines, JOM, 1991, 43(3), p 50-53. https://doi.org/10.1007/bf03220164

    Article  CAS  Google Scholar 

  5. C.G. Levi, Emerging Materials and Processes for Thermal Barrier Systems, Curr. Opin. Solid State Mater. Sci., 2004, 8(1), p 77-91. https://doi.org/10.1016/j.cossms.2004.03.009

    Article  CAS  Google Scholar 

  6. R. Vassen, A. Stuke, and D. Stöver, Recent Developments in the Field of Thermal Barrier Coatings, J. Therm. Spray Technol., 2009, 18(2), p 181-186. https://doi.org/10.1007/s11666-009-9312-7

    Article  CAS  Google Scholar 

  7. J.L. Smialek and R.A. Miller, Revisiting the Birth of 7YSZ Thermal Barrier Coatings: Stephan Stecura, Coatings, 2018, 8(7), p 7-12. https://doi.org/10.3390/coatings8070255

    Article  CAS  Google Scholar 

  8. B. Goswami, A.K. Ray, and S.K. Sahay, Thermal Barrier Coating System for Gas Turbine Application: A Review, High Temp. Mater. Process., 2004, 23(2), p 73-92. https://doi.org/10.1515/HTMP.2004.23.2.73

    Article  CAS  Google Scholar 

  9. X. Ren and W. Pan, Mechanical Properties of High-Temperature-Degraded Yttria-Stabilized Zirconia, Acta Mater., 2014, 69, p 397-406. https://doi.org/10.1016/j.actamat.2014.01.017

    Article  CAS  Google Scholar 

  10. A.M. Limarga, S. Shian, M. Baram, and D.R. Clarke, Effect of High-Temperature Aging on the Thermal Conductivity of Nanocrystalline Tetragonal Yttria-Stabilized Zirconia, Acta Mater., 2012, 60(15), p 5417-5424. https://doi.org/10.1016/j.actamat.2012.06.054

    Article  CAS  Google Scholar 

  11. S.R. Choi, D. Zhu, and R.A. Miller, Mechanical Properties/Database of Plasma-Sprayed ZrO2-8wt% Y2O3 Thermal Barrier Coatings, Int. J. Appl. Ceram. Technol., 2004, 1(4), p 330-342. https://doi.org/10.1111/j.1744-7402.2004.tb00184.x

    Article  CAS  Google Scholar 

  12. J.M. Drexler, A.L. Ortiz, and N.P. Padture, Composition Effects of Thermal Barrier Coating Ceramics on Their Interaction with Molten Ca-Mg-Al-Silicate (CMAS) Glass, Acta Mater., 2012, 60(15), p 5437-5447. https://doi.org/10.1016/j.actamat.2012.06.053

    Article  CAS  Google Scholar 

  13. J.J. Hua, L.P. Zhang, Z.W. Liu, Y.Z. Wang, C.C. Lin, Y. Zeng, and X.B. Zheng, Progress of Research on the Failure Mechanism of Thermal Barrier Coatings, J. Inorg. Mater., 2012, 27(7), p 680-686. https://doi.org/10.3724/SP.J.1077.2012.11565 ((in Chinese))

    Article  CAS  Google Scholar 

  14. A.R. Krause, H.F. Garces, G. Dwivedi, A.L. Ortiz, S. Sampath, and N.P. Padture, Calcia-Magnesia-Alumino-Silicate (CMAS)-Induced Degradation and Failure of air Plasma Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings, Acta Mater., 2016, 105, p 355-366. https://doi.org/10.1016/j.actamat.2015.12.044

    Article  CAS  Google Scholar 

  15. D.E. Mack, T. Wobst, M.O.D. Jarligo, D. Sebold, and R. Vaßen, Lifetime and Failure Modes of Plasma Sprayed Thermal Barrier Coatings in Thermal Gradient Rig Tests with Simultaneous CMAS Injection, Surf. Coat. Technol., 2017, 324, p 36-47. https://doi.org/10.1016/j.surfcoat.2017.04.071

    Article  CAS  Google Scholar 

  16. H. Liu, J. Cai, and J. Zhu, CMAS (CaO-MgO-Al2O3-SiO2) Resistance of Y2O3-Stabilized ZrO2 Thermal Barrier Coatings with Pt Layers, Ceram. Int., 2018, 44(1), p 452-458. https://doi.org/10.1016/j.ceramint.2017.09.197

    Article  CAS  Google Scholar 

  17. U. Schulz and W. Braue, Degradation of La2Zr2O7 and Other Novel EB-PVD Thermal Barrier Coatings by CMAS (CaO-MgO-Al2O3-SiO2) and Volcanic Ash Deposits, Surf. Coat. Technol., 2013, 235, p 165-173. https://doi.org/10.1016/j.surfcoat.2013.07.029

    Article  CAS  Google Scholar 

  18. F. Wang, L. Guo, C. Wang, and F. Ye, Calcium-Magnesium-Alumina-SILICATE (CMAS) Resistance Characteristics of LnPO4 (Ln = Nd, Sm, Gd) Thermal Barrier Oxides, J. Eur. Ceram. Soc., 2017, 37(1), p 289-296. https://doi.org/10.1016/j.jeurceramsoc.2016.08.013

    Article  CAS  Google Scholar 

  19. L. Gao, H. Guo, S. Gong, and H. Xu, Plasma-Sprayed La2Ce2O7 Thermal Barrier Coatings AGAINST Calcium-Magnesium-Alumina-Silicate Penetration, J. Eur. Ceram. Soc., 2014, 34(10), p 2553-2561. https://doi.org/10.1016/j.jeurceramsoc.2014.02.031

    Article  CAS  Google Scholar 

  20. J.J. Cui, J.H. Ouyang, and Z.G. Liu, Hot Corrosion Behavior of LaMgAl11O19 Ceramic Coated with Molten CMAS Deposits at Temperature of 1250 °C in air, J. Alloys Compd., 2016, 685, p 316-321. https://doi.org/10.1016/j.jallcom.2016.05.272

    Article  CAS  Google Scholar 

  21. L. Guo, M. Li, C. Yang, C. Zhang, L. Xu, F. Ye, C. Dan, and V. Ji, Calcium-Magnesium-Alumina-Silicate (CMAS) Resistance Property of BaLn2Ti3O10 (Ln = La, Nd) for Thermal Barrier Coating Applications, Ceram. Int., 2017, 43(13), p 10521-10527. https://doi.org/10.1016/j.ceramint.2017.05.107

    Article  CAS  Google Scholar 

  22. J.M. Drexler, A.D. Gledhill, K. Shinoda, A.L. Vasiliev, K.M. Reddy, S. Sampath, and N.P. Padture, Jet Engine Coatings for Resisting Volcanic Ash Damage, Adv. Mater., 2011, 23(21), p 2419-2424. https://doi.org/10.1002/adma.201004783

    Article  CAS  Google Scholar 

  23. L. Wei, L. Guo, M. Li, and H. Guo, Calcium-Magnesium-Alumina-Silicate (CMAS) Resistant Ba2REAlO5 (RE = Yb, Er, Dy) Ceramics for Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2017, 37(15), p 4991-5000. https://doi.org/10.1016/j.jeurceramsoc.2017.06.004

    Article  CAS  Google Scholar 

  24. M.H. Vidal-Sétif, C. Rio, D. Boivin, and O. Lavigne, Microstructural Characterization of the Interaction Between 8YPSZ (EB-PVD) Thermal Barrier Coatings and a Synthetic CAS, Surf. Coat. Technol., 2014, 239, p 41-48. https://doi.org/10.1016/j.surfcoat.2013.11.014

    Article  CAS  Google Scholar 

  25. S. Krämer, J. Yang, C.G. Levi, and C.A. Johnson, Thermochemical Interaction of Thermal Barrier Coatings with Molten CaO-MgO-Al2O3-SiO2 (CMAS) Deposits, J. Am. Ceram. Soc., 2006, 89(10), p 3167-3175. https://doi.org/10.1111/j.1551-2916.2006.01209.x

    Article  CAS  Google Scholar 

  26. W. Li, H. Zhao, X. Zhong, L. Wang, and S. Tao, Air Plasma-Sprayed Yttria and Yttria-Stabilized Zirconia Thermal Barrier Coatings Subjected to Calcium-Magnesium-Alumino-Silicate (CMAS), J. Therm. Spray Technol., 2014, 23(6), p 975-983. https://doi.org/10.1007/s11666-014-0107-0

    Article  CAS  Google Scholar 

  27. F. Traeger, M. Ahrens, R. Vaßen, and D. Stöver, A Life Time Model for Ceramic Thermal Barrier Coatings, Mater. Sci. Eng. A, 2003, 358(1-2), p 255-265. https://doi.org/10.1016/S0921-5093(03)00300-9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC) under the Grant No. 51701235, Science and Technology Innovation of Shanghai under the Grant No. 18511108702, and National Science and Technology Major Project under the Grant No. 2017-VI-0010-0082.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Shao or Shunyan Tao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Shao, F., Ni, J. et al. Calcium-Magnesium-Aluminum-Silicate (CMAS) Corrosion Resistance of Y-Yb-Gd-Stabilized Zirconia Thermal Barrier Coatings. J Therm Spray Tech 30, 442–456 (2021). https://doi.org/10.1007/s11666-020-01142-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01142-2

Keywords

Navigation