Log in

Narrow and Thin Copper Linear Pattern Deposited by Vacuum Cold Spraying and Deposition Behavior Simulation

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Compared with ceramic materials, the fabrication of dense metal films requires higher impact velocity in vacuum cold spraying (VCS), also known as aerosol deposition method. In this study, a supersonic nozzle for the fabrication of dense, thin and narrow copper lines was designed. The acceleration behavior of gas and copper particles was investigated through CFD numerical simulation. And the impact behavior of copper particles was studied through finite element analysis. The copper lines with the width of about 200 μm and the height of about 4 μm were directly fabricated on silicon wafers at room temperature without masking. The results show that there is an optimum particle diameter for the impact velocity in particle collision deposition systems. In order to obtain a higher particle impact velocity in VCS, the substrate should be placed behind the high-pressure region of gas shock wave, so that the position of the high-pressure region of the free jet and the position of the bow shock with the substrate coincide as much as possible. Copper particles undergo plastic deformation and particle flattening upon impact and subsequent particle compaction. The width of copper line increased with increasing standoff distance, and maximum height decreased with increasing standoff distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.M. Takahashi, Electroplating Copper onto Resistive Barrier Films, J. Electrochem. Soc., 2000, 147(4), p 1414

    Article  CAS  Google Scholar 

  2. J.F. Pierson, D. Wiederkehr, and A. Billard, Reactive Magnetron Sputtering of Copper, Silver, and Gold, Thin Solid Films, 2005, 478(1–2), p 196-205

    Article  CAS  Google Scholar 

  3. J.A.T. Norman, B.A. Muratore, and P.N. Dyer, A New Metal-Organic Chemical Vapor Deposition Process for Selective Copper Metallization, Mater. Sci. Eng., B, 1993, https://doi.org/10.1016/0921-5107(93)90085-2

    Article  Google Scholar 

  4. J. Li, Y. Zhang, K. Ma, X.-D. Pan, C.-X. Li, G.-J. Yang, and C.-J. Li, Microstructure and Transparent Super-Hydrophobic Performance of Vacuum Cold-Sprayed Al2O3 and SiO2 Aerogel Composite Coating, J. Therm. Spray Technol., 2018, 27(3), p 471-482

    Article  CAS  Google Scholar 

  5. L.-S. Wang, C.-X. Li, K. Ma, S.-L. Zhang, G.-J. Yang, and C.-J. Li, La0.8Sr0.2Ga0.8Mg0.2O3 Electrolytes Prepared by Vacuum Cold Spray under Heated Gas for Improved Performance of SOFCs, Ceram. Int., 2018, 44(12), p 13773-13781

    Article  CAS  Google Scholar 

  6. L.-S. Wang, C.-X. Li, K. Ma, S.-L. Zhang, G.-J. Yang, and C.-J. Li, Microstructure and Electrochemical Properties of La0.8Sr0.2Ga0.8Mg0.2O3 Thin Film Deposited by Vacuum Cold Spray for Solid Oxide Fuel Cells, ECS Trans., 2017, 78(1), p 405-412

    Article  CAS  Google Scholar 

  7. S.Q. Fan, G.J. Yang, C.J. Li, G.J. Liu, C.X. Li, and L.Z. Zhang, Characterization of Microstructure of Nano-TiO2 Coating Deposited by Vacuum Cold Spraying, Proc. Int. Therm. Spray Conf., 2006, 15(4), p 513-517

    CAS  Google Scholar 

  8. Y. Liu, Y.Y. Wang, G.J. Yang, J.J. Feng, and K. Kusumoto, Effect of Nano-Sized TiN Additions on the Electrical Properties of Vacuum Cold Sprayed SiC Coatings, J. Therm. Spray Technol., 2010, 19(6), p 1238-1243

    Article  CAS  Google Scholar 

  9. L.S. Wang, H.F. Zhou, K.J. Zhang, Y.Y. Wang, C.X. Li, X.T. Luo, G.J. Yang, and C.J. Li, Effect of the Powder Particle Structure and Substrate Hardness during Vacuum Cold Spraying of Al2O3, Ceram. Int., 2017, 43(5), p 4390-4398

    Article  CAS  Google Scholar 

  10. S.-Q. Fan, C.-J. Li, C.-X. Li, G.-J. Liu, G.-J. Yang, and L.-Z. Zhang, Preliminary Study of Performance of Dye-Sensitized Solar Cell of Nano-TiO2 Coating Deposited by Vacuum Cold Spraying, Mater. Trans., 2006, 47(7), p 1703-1709

    Article  CAS  Google Scholar 

  11. J. Akedo, Aerosol Deposition of Ceramic Thick Films at Room Temperature: Densification Mechanism of Ceramic Layers, J. Am. Ceram. Soc., 2006, 89(6), p 1834-1839

    Article  CAS  Google Scholar 

  12. H. Park, H. Kwon, and C. Lee, Inflight Particle Behavior in the Vacuum Kinetic Spray Process, J. Therm. Spray Technol., 2017, 26(7), p 1616-1631

    Article  CAS  Google Scholar 

  13. F. Gärtner, T. Stoltenhoff, T. Schmidt, and H. Kreye, The Cold Spray Process and Its Potential for Industrial Applications, J. Therm. Spray Technol., 2006, 15(2), p 223-232

    Article  Google Scholar 

  14. H. Assadi, T. Schmidt, H. Richter, J.-O. Kliemann, K. Binder, F. Gärtner, T. Klassen, and H. Kreye, On Parameter Selection in Cold Spraying, J. Therm. Spray Technol., 2011, 20(6), p 1161-1176

    Article  CAS  Google Scholar 

  15. D.M. Chun, J.O. Choi, C.S. Lee, and S.H. Ahn, Effect of Stand-off Distance for Cold Gas Spraying of Fine Ceramic Particles under Low Vacuum and Room Temperature Using Nano-Particle Deposition System (NPDS), Surf. Coat. Technol., 2012, 206(8–9), p 2125-2132

    Article  CAS  Google Scholar 

  16. W.Y. Li, C. Zhang, X.P. Guo, G. Zhang, H.L. Liao, C.J. Li, and C. Coddet, Effect of Standoff Distance on Coating Deposition Characteristics in Cold Spraying, Mater. Des., 2008, 29(2), p 297-304

    Article  Google Scholar 

  17. W.-Y. Li, H. Liao, G. Douchy, and C. Coddet, Optimal Design of a Cold Spray Nozzle by Numerical Analysis of Particle Velocity and Experimental Validation with 316L Stainless Steel Powder, Mater. Des., 2007, 28(7), p 2129-2137

    Article  CAS  Google Scholar 

  18. Abaqus Analysis User’s Manual, ABAQUS 6.13 HTML Documentation, Dassault Systèmes, 2013, n.d.

  19. X. Suo, S. Yin, M.-P. Planche, T. Liu, and H. Liao, Strong Effect of Carrier Gas Species on Particle Velocity during Cold Spray Processes, Surf. Coat. Technol., 2015, 268, p 90-93

    Article  CAS  Google Scholar 

  20. B. Vreman, B.J. Geurts, N.G. Deen, J.A.M. Kuipers, and J.G.M. Kuerten, Two- and Four-Way Coupled Euler-Lagrangian Large-Eddy Simulation of Turbulent Particle-Laden Channel Flow, Flow Turbul. Combust., 2009, 82(1), p 47-71

    Article  Google Scholar 

  21. S. Yin, X.F. Wang, and W.Y. Li, Computational Analysis of the Effect of Nozzle Cross-Section Shape on Gas Flow and Particle Acceleration in Cold Spraying, Surf. Coat. Technol., 2011, 205(8–9), p 2970-2977

    Article  CAS  Google Scholar 

  22. S. Yin, M. Meyer, W. Li, H. Liao, and R. Lupoi, Gas Flow, Particle Acceleration, and Heat Transfer in Cold Spray: A Review, J. Therm. Spray Technol., 2016, 25(5), p 874-896

    Article  Google Scholar 

  23. F.F. Wang, W.Y. Li, M. Yu, and H.L. Liao, Prediction of Critical Velocity during Cold Spraying Based on a Coupled Thermomechanical Eulerian Model, J. Therm. Spray Technol., 2014, 23(1–2), p 60-67

    Article  Google Scholar 

  24. W.Y. Li, K. Yang, S. Yin, and X.P. Guo, Numerical Analysis of Cold Spray Particles Impacting Behavior by the Eulerian Method: A Review, J. Therm. Spray Technol., 2016, 25(8), p 1441-1460

    Article  CAS  Google Scholar 

  25. W. Li, K. Yang, D. Zhang, and X. Zhou, Residual Stress Analysis of Cold-Sprayed Copper Coatings by Numerical Simulation, J. Therm. Spray Technol., 2016, 25(1–2), p 131-142

    Article  CAS  Google Scholar 

  26. K. Yang, W. Li, X. Guo, X. Yang, and Y. Xu, Characterizations and Anisotropy of Cold-Spraying Additive-Manufactured Copper Bulk, J. Mater. Sci. Technol., 2018, 34(9), p 1570-1579

    Article  Google Scholar 

  27. W. Li, K. Yang, D. Zhang, X. Zhou, and X. Guo, Interface Behavior of Particles upon Impacting during Cold Spraying of Cu/Ni/Al Mixture, Mater. Des., 2016, 95, p 237-246

    Article  CAS  Google Scholar 

  28. M. Yu, W.Y. Li, F.F. Wang, and H.L. Liao, Finite Element Simulation of Impacting Behavior of Particles in Cold Spraying by Eulerian Approach, J. Therm. Spray Technol., 2012, 21(3), p 745-752

    Article  CAS  Google Scholar 

  29. W.-Y. Li and W. Gao, Some Aspects on 3D Numerical Modeling of High Velocity Impact of Particles in Cold Spraying by Explicit Finite Element Analysis, Appl. Surf. Sci., 2009, 255(18), p 7878-7892

    Article  CAS  Google Scholar 

  30. S. Yin, X. Wang, W. Li, H. Liao, and H. Jie, Deformation Behavior of the Oxide Film on the Surface of Cold Sprayed Powder Particle, Appl. Surf. Sci., 2012, 259, p 294-300

    Article  CAS  Google Scholar 

  31. C. Zhang, Q. Chen, J. Liu, W. Tang, K. Wang, and J. Song, Numerical Study on the Effect of the Cold Powder Carrier Gas on Powder Stream Characteristics in Cold Spray, Surf. Coat. Technol., 2016, 294, p 177-185

    Article  CAS  Google Scholar 

  32. C. Li, N. Singh, A. Andrews, B.A. Olson, T.E. Schwartzentruber, and C.J. Hogan, Mass, Momentum, and Energy Transfer in Supersonic Aerosol Deposition Processes, Int. J. Heat Mass Transf., 2019, 129, p 1161-1171

    Article  Google Scholar 

  33. J. Pattison, S. Celotto, A. Khan, and W. O’neill, Standoff Distance and Bow Shock Phenomena in the Cold Spray Process, Surface Coat. Technol., 2008, 202(8), p 1443-1454

    Article  CAS  Google Scholar 

  34. L. de Juan and J. Fernández de la Mora, Sizing Nanoparticles with a Focusing Impactor: Effect of the Collector Size, J. Aerosol Sci., 1998, 29(5), p 589-599

    Article  Google Scholar 

  35. X. Wang, F.E. Kruis, and P.H. McMurry, Aerodynamic Focusing of Nanoparticles: I. Guidelines for Designing Aerodynamic Lenses for Nanoparticles, Aerosol Sci. Technol., 2005, 39(7), p 611-623

    Article  CAS  Google Scholar 

  36. T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54(3), p 729-742

    Article  CAS  Google Scholar 

  37. J. Vlcek, L. Gimeno, H. Huber, and E. Lugscheider, A Systematic Approach to Material Eligibility for the Cold-Spray Process, J. Therm. Spray Technol., 2005, 14(1), p 125-133

    Article  Google Scholar 

  38. D.-W. Lee, O.-Y. Kwon, W.-J. Cho, J.-K. Song, and Y.-N. Kim, Characteristics and Mechanism of Cu Films Fabricated at Room Temperature by Aerosol Deposition, Nanoscale Res. Lett., 2016, 11, p 162

    Article  Google Scholar 

  39. X.-T. Luo, C.-X. Li, F.-L. Shang, G.-J. Yang, Y.-Y. Wang, and C.-J. Li, High Velocity Impact Induced Microstructure Evolution during Deposition of Cold Spray Coatings: A Review, Surf. Coat. Technol., 2014, 254, p 11-20

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51761145108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-**n Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, K., Li, CJ. & Li, CX. Narrow and Thin Copper Linear Pattern Deposited by Vacuum Cold Spraying and Deposition Behavior Simulation. J Therm Spray Tech 30, 571–583 (2021). https://doi.org/10.1007/s11666-020-01102-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01102-w

Keywords

Navigation