Log in

Effect of Shot Peening Duration on Microstructure and Mechanical Properties of GH4169 Alloy Prepared by 3D Printing

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study explores the influence of different shot peening (SP) durations on the microstructure and mechanical properties of 3D printed GH4169 alloy. This investigation examines the changes of microstructure and mechanical properties at different SP durations, and the following conclusions are drawn: (1) when the SP durations are 1, 3 and 5 min, the average thickness of the plastic deformation layer are approximately 84.6, 176.9, and 261.5 μm, respectively. This is mainly due to the influence of plastic strain and flow stress with the increase of SP duration. The grain size reaches its minimum value (approximately 3.7 μm) at 5 min. (2) The hardness values on the X0Y surface of 3D-printed GH4169 alloy are 549.2, 530.9 and 573.1HV, with the increase of SP duration from 1 to 5 min, respectively. (3) With the increase of SP duration, the yield strength of 3D printed GH4169 alloy is 765, 778 and 883 MPa, respectively. The total elongation under different SP treatments is 12.75, 14 and 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig 1
Fig 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data in this study are available from the corresponding author by request.

References

  1. V.Y. Bhise and B.F. Jogi, Effect of Cutting Speed and Feed on Surface Roughness in Dry Turning of Inconel X-750, Mater. Today Proc., 2022, 61, p 587–592.

    Article  Google Scholar 

  2. X.D. Lu, J.H. Du, Q. Deng, and J.Y. Zhuang, Stress Rupture Properties of GH4169 Superalloy, J. Mater. Res. Technol., 2014, 3, p 107–113.

    Article  CAS  Google Scholar 

  3. D. Dong, K.Q. Shi, D.D. Zhu, Y.F. Liang, Z.J. Wei, and J.P. Lin, Microstructure Evolution and MECHANICAL properties of High Nb-TiAl Alloy/GH4169 Joints Brazed Using CuTiZrNi Amorphous Filler Alloy, Intermetallics, 2021, 139, 107351.

    Article  CAS  Google Scholar 

  4. J.T. Luo, W.L. Yu, C.Y. **, C.X. Zhang, and C.H. Ma, Preparation of Ultrafine-Grained GH4169 Superalloy by High-Pressure Torsion and Analysis of Grain Refinement Mechanism, J. Alloys Compd., 2019, 777, p 157–164.

    Article  CAS  Google Scholar 

  5. Y. Wang, W.Z. Shao, L. Zhen, L. Yang, and X.M. Zhang, Flow Behavior and Microstructures of Superalloy 718 During High Temperature Deformation, Mater. Sci. Eng. A, 2008, 497, p 479–486.

    Article  Google Scholar 

  6. Y.C. Wang, L.M. Lei, L. Shi, F. Liang, H.Y. Wan, B. Zhang, and G.P. Zhang, Effect of Heat Treatment on Strain Hardening Ability of Selective Laser Melted Precipitation-Hardened GH4169 Superalloy, Mater Charact, 2022, 190, 112064.

    Article  CAS  Google Scholar 

  7. C.L. Tan, F. Weng, S. Sui, Y.X. Chew, and G.J. Bi, Progress and Perspectives in Laser Additive Manufacturing of Key Aeroengine Materials, Int. J. Mach. Tool Manuf., 2021, 170, 103804.

    Article  Google Scholar 

  8. A. Huang, L. Zhou, X.Q. Chen, and M. Gong, SMART Robotic System for 3D profile Turbine Vane Airfoil Repair, Int. J Adv. Manuf. Tech., 2003, 21, p 275–283.

    Article  Google Scholar 

  9. O. Yilmaz, N. Gindy, and G. Jian, A Repair and Overhaul Methodology for Aeroengine Components, Robot Cim. Int. Manuf., 2010, 26, p 190–201.

    Article  Google Scholar 

  10. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang, Additive Manufacturing of Metallic Components: Process, Structure and Properties, Prog. Mater. Sci., 2018, 92, p 112–224.

    Article  CAS  Google Scholar 

  11. P. Yang, C.X. Liu, Q.Y. Guo, and Y.C. Liu, Variation of Activation Energy Determined by a Modified Arrhenius Approach: Roles of Dynamic Recrystallization on the Hot Deformation of Ni-Based Superalloy, J. Mater. Sci. Technol., 2021, 72, p 162–171.

    Article  CAS  Google Scholar 

  12. L.C.M. Valle, A.I.C. Santana, M.C. Rezende, J. Dille, O.R. Mattos, and L.H. Almeida, The Influence of Heat Treatments on the Corrosion Behavior of Nickel-Based Alloy 718, J. Alloy. Compd., 2019, 809, 151781.

    Article  CAS  Google Scholar 

  13. G.A. Qian, Z.M. Jian, X.N. Pan, and F. Berto, In-situ INVESTIGATION on fatigue Behaviors of Ti-6Al-4V Manufactured by Selective Laser Melting, Int. J. Fatigue, 2020, 13, 105424.

    Article  Google Scholar 

  14. P. Edwards and M. Ramulu, Fatigue Performance Evaluation of Selective Laser Melted Ti-6Al-4V, Mater. Sci. Eng. A, 2014, 598, p 327–337.

    Article  CAS  Google Scholar 

  15. V. Chastand, P. Quaegebeur, W. Maia, and E. Charkaluk, Comparative Study of Fatigue Properties of Ti-6Al-4V Specimens Built by Electron Beam Melting (EBM) and Selective Laser Melting (SLM), Mater Charact, 2018, 143, p 76–81.

    Article  CAS  Google Scholar 

  16. S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A. Richard, and H.J. Maier, On the Mechanical Behaviour of Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting: Fatigue Resistance and Crack Growth Performance, Int. J. Fatigue, 2013, 48, p 300–307.

    Article  CAS  Google Scholar 

  17. D. Herzog, V. Seyda, E. Wycisk, and C. Emmelmann, Additive Manufacturing of Metals, Acta Mater., 2016, 17, p 371–392.

    Article  Google Scholar 

  18. L.F.S. Vieira, H.J.C. Voorwald, and M.O.H. Cioffi, Fatigue Performance of AISI 4340 Steel Ni-Cr-B-Si-Fe HVOF Thermal Spray Coated, Procedia Eng., 2015, 114, p 606–612.

    Article  CAS  Google Scholar 

  19. Y.S. Nam, Y.I. Jeong, B.C. Shin, and J.H. Byun, Enhancing Surface Layer Properties of an Aircraft Aluminum Alloy by Shot Peening Using Response Surface Methodology, Mater. Design, 2015, 83, p 566–576.

    Article  CAS  Google Scholar 

  20. B.G. Scuracchio, N.B. de Lima, and C.G. Schön, Role of Residual Stresses Induced by Double Peening on Fatigue Durability of Automotive Leaf Springs, Mater. Design, 2013, 47, p 672–676.

    Article  CAS  Google Scholar 

  21. Y.H. Zhou, H.B. Yao, P.Y. Wei, A.X. Feng, X. He, J. Yue, W. Su, and W.H. Zhu, Study on Cavitation Erosion Resistance of Bimodal Grain Copper Alloy Fabricated by Laser Shock Peening, J. Mater., 2023, 25, p 1813–1823.

    CAS  Google Scholar 

  22. M. Mhaede, F. Pastorek, and B. Hadzima, Influence of Shot Peening on Corrosion Properties Of biocompatible Magnesium Alloy AZ31 Coated by Dicalcium Phosphate Dihydrate (DCPD), Mat. Sci. Eng. C., 2014, 39, p 330–335.

    Article  CAS  Google Scholar 

  23. H.C. Yang, W. Zhang, X.C. Zhuang, and Z. Zhao, Anisotropic Plastic Flow of Low/Medium Carbon Steel Plates in Different Loading Conditions: Characterization of the r-Value, J. Mater. Process Tech., 2023, 321, 118159.

    Article  CAS  Google Scholar 

  24. A. Evans, S.B. Kim, J. Shackleton, G. Bruno, M. Preuss, and P.J. Withers, Relaxation of Residual Stress in Shot peened Udimet 720Li Under High Temperature Isothermal Fatigue, Int. J. Fatigue, 2005, 27, p 1530–1534.

    Article  CAS  Google Scholar 

  25. C.L. Xu, X. Wang, Y.X. Geng, Y.M. Wang, Z.W. Sun, B. Yu, Z.H. Tang, and S.L. Dai, Effect of Shot Peening on the Surface Integrity and Fatigue property of Gear Steel 16Cr3NiWMoVNbE at Room Temperature, Int. J. Fatigue, 2023, 172, 107668.

    Article  CAS  Google Scholar 

  26. Z. Qin, B. Li, R. Chen, H. Zhang, H.Q. Xue, C.F. Yao, and L. Tan, Effect of Shot Peening on High Cycle and Very High Cycle Fatigue Properties of Ni-Based Superalloys, Int. J. Fatigue, 2023, 168, 107429.

    Article  CAS  Google Scholar 

  27. H. Hou, R.F. Dong, Y.X. Tan, C.H. Li, X.Y. Zhang, L. Wu, B. Zhu, and Y.H. Zhao, Microstructural Characteristics and Enhanced Mechanical Properties of 2024 Aluminum Alloy Resulting from Shot-Peening Treatment, Mater Charact, 2023, 206, 113412.

    Article  CAS  Google Scholar 

  28. H.H. Lai, H.C. Cheng, C.Y. Lee, C.M. Lin, and W. Wu, Effect of Shot Peening time on δ/γ Residual Stress Profiles of AISI 304 Weld, J. Mater. Process Tech., 2020, 284, 116747.

    Article  CAS  Google Scholar 

  29. Z. Yanushkevich, S.V. Dobatkin, A. Belyakov, and R. Kaibyshev, Hall-Etch Relationship for Austenitic Stainless Steels Processed by Large Strain Warm Rolling, Acta Mater., 2017, 136, p 39–48.

    Article  CAS  Google Scholar 

  30. X.H. Zhao, H.Y. Zhou, and Y. Liu, Effect of Shot Peening on the Fatigue Properties of Nickel-Based Superalloy GH4169 at High Temperature, Results Phys., 2018, 11, p 452–460.

    Article  Google Scholar 

  31. H.J. Pan, W.Y. Tao, B. Zhang, P. Jiang, Z.Z. Wang, W.P. Wu, L. Liu, J. Li, Z.Q. Wu, and Z.H. Cai, Effect of Shot Peening Strengths on Microstructure and Mechanical Properties of 316L Stainless Steel Prepared by 3D Printing, Adv. Eng. Mater., 2023, 25, p 2201675.

    Article  CAS  Google Scholar 

  32. H.J. Pan, P. Jiang, Y. Zhang, W.P. Wu, Z.Z. Wang, Q. Wang, and H.Y. Li, Microstructure and Mechanical Properties of a Novel Nb-Mo Bearing Medium-Mn Alloy Affected by Intercritical Annealing and Tempering, Mater. Sci. Eng. A, 2021, 802, p 140680.

    Article  CAS  Google Scholar 

  33. H.J. Pan, W.Y. Tao, B. Zhang, P. Jiang, Z.Z. Wang, W.P. Wu, L. Liu, J. Li, Z.Q. Wu, and Z.H. Cai, Microstructure and Mechanical Properties of 3D-Printed 316L Stainless Steel at Different Shot Peening Durations. J. Mater. Eng. Perform.,2023.

  34. H.J. Pan, Z. Wang, B. Zhang, P. Jiang, Z.Z. Wang, W.P. Wu, L. Liu, J. Li, Z.Q. Wu, and Z.H. Cai, Effect of Shot Peening on Microstructure and Mechanical Properties of 316L Stainless Steel Prepared by 3D Printing with Different Forming Angles. J. Mater. Eng. Perform., 2023.

Download references

Acknowledgments

The authors thank you for the project support from Ministry of Science and Technology of China (No. 52204382).

Author information

Authors and Affiliations

Authors

Contributions

Wenyu Tao: Conceptualization, Resources, Methodology, Writing—review & editing, Formal analysis, Supervision. Haijun Pan: Investigation, Data curation, Visualization, Writing original draft, Funding acquisition. Yi Zhao: Writing—review & editing, Supervision. Shunhu Zhang: Writing—review & editing, Supervision. Zhiqiang Wu: Writing—review & editing, Supervision. Zhihui Cai: Writing—review & editing, Supervision.

Corresponding authors

Correspondence to Haijun Pan, Shunhu Zhang or Zhihui Cai.

Ethics declarations

Conflict of interest

All authors state that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, W., Pan, H., Zhao, Y. et al. Effect of Shot Peening Duration on Microstructure and Mechanical Properties of GH4169 Alloy Prepared by 3D Printing. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09686-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09686-y

Keywords

Navigation