Log in

Impact of Porcelain Firing Cycling on the Microstructure and Mechanical Properties of Selective Laser-Melted Co-Cr-Mo-W Dental Alloys

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

To adhere to esthetic standards, porcelain-fused-to-metal (PFM) restorations are commonly fabricated utilizing porcelain firing cycling (PFC) to bond ceramics onto metal substrates. However, the impact of PFC on the microstructure and mechanical properties of selective laser-melted (SLM) Co-Cr-Mo-W dental metal-ceramic alloys remains unclear. In this study, the influence of PFC on the microstructure and mechanical properties of different states of SLM Co-Cr-Mo-W dental alloys (As-SLM, hardening heat-treated, and softening heat-treated) was investigated. These findings reveal that PFC treatment significantly impacts mechanical properties, with varying effects on different alloy states. In As-SLM samples, it enhances strength but reduces elongation due to the emergence of ε-Co and Laves phases. In hardening heat-treated (HT) samples, PFC reduces strength but enhances elongation by replacing brittle ε-Co with more ductile γ-Co. In softening HT samples, PFC increases strength and reduces elongation, primarily due to the supersaturated microstructure leading to the precipitation of dispersed Laves phases within the grains. This investigation provides insights to optimize SLM Co-Cr-Mo-W alloy restorations for dental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Ucar, T. Akova, M.S. Akyil, and W.A. Brantley, Internal Fit Evaluation of Crowns Prepared Using a New Dental Crown Fabrication Technique: Laser-Sintered Co-Cr Crowns, J. Prosthet. Dent., 2009, 102, p 253–259.

    Article  CAS  PubMed  Google Scholar 

  2. Lu. Yan**, S. Guo, Y. Yang, Yu. Yu**g Liu, S.W. Zhou, C. Zhao, and J. Lin, Effect of Thermal Treatment and Fluoride Ions on the Electrochemical Corrosion Behavior of Selective Laser Melted CoCrW Alloy, J. Alloy. Compd., 2018, 730, p 552–562.

    Article  Google Scholar 

  3. M. Zhang, Y. Yang, C. Song, Y. Bai, and Z. **ao, An investigation into the Aging Behavior of CoCrMo Alloys Fabricated by Selective Laser Melting, J. Alloy. Compd., 2018, 750, p 878–886.

    Article  CAS  Google Scholar 

  4. A. Chiba, N. Nomura, and Y. Ono, Microstructure and Mechanical Properties of Biomedical Co-29Cr-Mo Alloy Wire Fabricated by a Modified Melt-Spinning Process, Acta Mater., 2007, 55, p 2119–2128.

    Article  CAS  Google Scholar 

  5. X. **n, N. **ang, and J. Chen, Corrosion Characteristics of a Selective Laser Melted Co-Cr Dental Alloy Under Physiological Conditions, J. Mater. Sci., 2012, 47, p 13–24.

    Article  Google Scholar 

  6. Y. Zhou, W. Wei, J. Yan, W. Liu, N. Li, H. Li, and Xu. Sheng, Microstructures and Metal-Ceramic Bond Properties of Co-Cr Biomedical Alloys Fabricated by Selective Laser Melting And Casting, Mat. Sci. Eng. A., 2019, 759, p 594–602.

    Article  CAS  Google Scholar 

  7. W. Wei, Y. Zhou, W. Liu, N. Li, J. Yan, H. Li, M. Characterization and M. Properties, and Corrosion Resistance of Dental Co-Cr-Mo-W Alloys Manufactured by Selective Laser Melting, J. Mater. Eng. Perform., 2018, 27, p 5312–5320.

    Article  CAS  Google Scholar 

  8. K. Dimitriadis, A.G. Lekatou, A.K. Sfikas, M. Roumpi, S. Tsouli, A. Galiatsatos, and S. Agathopoulos, Influence of Heat-Treatment Cycles on the Microstructure, Mechanical Properties and Corrosion Resistance of Co-Cr Dental Alloys Fabricated by Selective Laser Melting, J. Mater. Eng. Perform., 2021, 30, p 5252–5265.

    Article  CAS  Google Scholar 

  9. L. Wang, X. Jiang, Y. Zhu, X. Zhu, J. Sun, and B. Yan, An Approach to Predict The Residual Stress and Distortion During the Selective Laser Melting of AlSi10Mg Parts, Int. J. Adv. Manuf. Technol., 2018, 97, p 9–12.

    Article  Google Scholar 

  10. W. Wei, Y. Zhou, Q. Sun, N. Li, J. Yan, H. Li, W. Liu, and C. Huang, Microstructures and Mechanical Properties of Dental Co-Cr-Mo-W Alloys Fabricated by Selective Laser Melting at Different Subsequent Heat Treatment Temperatures, Metall. Mater. Trans. A, 2020, 51, p 3205–3214.

    Article  CAS  Google Scholar 

  11. Y. Kajima, A. Takaichi, N. Kittikundecha, T. Nakamoto, T. Kimura, N. Nomura, A. Kawasaki, T. Hanawa, H. Takahashi, and N. Wakabayashi, Effect of Heat-Treatment Temperature on Microstructures and Mechanical Properties of Co-Cr-Mo Alloys Fabricated by Selective Laser Melting, Mat. Sci. Eng. A., 2018, 72, p 21–31.

    Article  Google Scholar 

  12. E. Seki, Y. Kajima, A. Takaichi, N. Kittikundecha, H.H. Cho, H.L. Htat, H. Doi, T. Hanawa, and N. Wakabayashi, Effect of Heat Treatment on the Microstructure and Fatigue Strength of CoCrMo Alloys Fabricated by Selective Laser Melting, Mater. Lett., 2019, 245(53–6), p 1.

    Google Scholar 

  13. M. Roudnicka, J. Bigas, O. Molnarova, D. Palousek, and D. Vojtech, Different Response of Cast and 3D-Printed Co-Cr-Mo Alloy to Heat Treatment: A Thorough Microstructure Characterization, Metals., 2011, 11, p 687.

    Article  Google Scholar 

  14. P. Mengucci, G. Barucca, A. Gatto, E. Bassoli, L. Denti, F. Fiori, E. Girardin, P. Bastianoni, and B. Rutkowski, and Czyrska-Filemonowicz, Effects of Thermal Treatments on Microstructure and Mechanical Properties of a Co-Cr-Mo-W Biomedical Alloy Produced by Laser Sintering, J. Mech. Behav. Biomed., 2016, 60, p 106–117.

    Article  CAS  Google Scholar 

  15. International Organization for Standardization, ISO 22674(E), DentistryMetallic Materials for Fixed and Removable Restorations and Appliances, ISO, Geneva, (2016).

  16. C. Balagna, S. Spriano, and M.G. Faga, Characterization of Co-Cr-Mo Alloys after a Thermal Treatment for High Wear Resistance, Mater. Sci. Eng. C, 2012, 32, p 1868–1877.

    Article  CAS  Google Scholar 

  17. A.J. Saldivar and H.F. Lopez, Role of Aging on the Martensitic Transformation in a Cast Cobalt Alloy, Scr. Mater., 2001, 45(4), p 427–433.

    Article  CAS  Google Scholar 

  18. S. Kurosu, H. Matsumoto, and A. Chiba, Isothermal Phase Transformation in Biomedical Co-29Cr-6Mo Alloy without Addition of Carbon or Nitrogen, Metall. Mater. Trans. A, 2010, 41, p 2613–2625.

    Article  Google Scholar 

  19. A. Mani, S. Rodriguez, and H.F. Lopez, Deformation Induced FCC to HCP Transformation in a Co-27Cr-5Mo-0.05C Alloy, Mat. Sci. Eng. A., 2010, 528, p 3037–3043.

    Article  Google Scholar 

  20. Y. Koizumi, S. Suzuki, and K. Yamanaka, Strain-induced Martensitic Transformation Near twin Boundaries in a Biomedical Co-Cr-Mo Alloy with Negative Stacking Fault Energy, Acta Mater., 2013, 61, p 1648–1661.

    Article  CAS  Google Scholar 

  21. F.Z. Hassani, M. Ketabchi, and S. Bruschi, Effects of Carbide Precipitation on the Microstructural and Tribological Properties of Co-Cr-Mo-C Medical Implants after Thermal Treatment, J. Mater. Sci., 2016, 51, p 4495–4508.

    Article  CAS  Google Scholar 

  22. Lu. Yan**, Wu. Songquan, Y. Gan, S. Zhang, S. Guo, J. Lin, and J. Lin, Microstructure, Mechanical Property and Metal Release of As-SLM CoCrW Alloy under Different Solution Treatment Conditions, J. Mech. Behav. Biomed., 2016, 55, p 179–190.

    Article  Google Scholar 

  23. R.D. Doherty, D.A. Hughes, and F.J. Humphreys, Current Issues in Recrystallization: A Review, Mater. Today, 1998, 1, p 219–274.

    Article  Google Scholar 

  24. Y. Li, Y. Koizumi and A. Chiba, Dynamic Recrystallization in Biomedical Co-29Cr-6Mo-0.16N Alloy with Low Stacking Fault Energy, Mat. Sci. Eng. A., 2016, 668, p 86–96.

    Article  CAS  Google Scholar 

  25. S. Mahajan, C.S. Pande, M.A. Imam, and B.B. Rath, Formation of annealing twins in f.c.c. crystals, Acta Mater., 1997, 45(6), p 2633–2638.

    Article  CAS  Google Scholar 

  26. Z.W. Wang, Y.B. Wang, X.Z. Liao, Y.H. Zhao, E.J. Lavernia, Y.T. Zhu, Z. Horita, and T.G. Langdon, Influence of stacking fault energy on deformation mechanism and dislocation storage capacity in ultrafine-grained materials, Scr. Mater., 2009, 60(1), p 52–55.

    Article  CAS  Google Scholar 

  27. C.J. Youngdahl, J.R. Weertman, and R.C. Hugo, Deformation behavior in Nanocrystalline Copper, Scr. Mater., 2001, 44, p 1475–1478.

    Article  CAS  Google Scholar 

  28. V.D. Divya, R. Muñoz-Moreno, O.M.D.M. Messé, J.S. Barnard, S. Baker, T. Illston, and H.J. Stone, Microstructure of Selective Laser Melted CM247LC Nickel-based Superalloy and its Evolution Through Heat Treatment, Mater Charact, 2016, 114, p 62–74.

    Article  CAS  Google Scholar 

  29. F. Liu, X. Lin, G. Yang, M. Song, J. Chen, and W. Huang, Microstructure and Residual Stress of Laser Rapid formed Inconel 718 Nickel-base Superalloy, Opt. Laser Technol., 2010, 43, p 208–213.

    Article  Google Scholar 

  30. Bo. Song, S. Dong, Qi. Liu, H. Liao, and C. Coddet, Vacuum Heat Treatment of Iron Parts Produced by Selective Laser Melting: Microstructure, Residual Stress and Tensile Behavior, Mater. Des., 2014, 54, p 727–733.

    Article  CAS  Google Scholar 

  31. I. Toda-Caraballo, J. Chao, and L.E. Lindgren, Effect of Residual Stress on Recrystallization Behavior of Mechanically Alloyed Steels, Scr. Mater., 2010, 62, p 41–44.

    Article  CAS  Google Scholar 

  32. K. Yamanaka, M. Mori, and A. Chiba, Effects of Carbon Concentration on Microstructure and Mechanical Properties of as-Cast Nickel-free Co-28Cr-9W-based Dental Alloys, Mat. Sci. Eng. C, 2014, 40, p 127–134.

    Article  CAS  Google Scholar 

  33. S. Lee, E. Takahashi, and N. Nomura, Effect of Carbon Addition on Microstructure and Mechanical Properties of a Wrought Co-Cr-Mo Implant Alloy, Mater. Trans., 2006, 47, p 287–290.

    Article  CAS  Google Scholar 

  34. G. Barucca, E. Santecchia, and G. Majni, Structural Characterization of Biomedical Co-Cr-Mo Components Produced by Direct Metal Laser Sintering, Mat. Sci. Eng. C, 2015, 48, p 263–269.

    Article  CAS  Google Scholar 

  35. K. Yamanaka, M. Mori, and A. Chiba, Effects of Nitrogen Addition on Microstructure and Mechanical Behavior of Biomedical Co-Cr-Mo Alloys, J. Mech. Behav. Biomed., 2014, 29, p 417–426.

    Article  CAS  Google Scholar 

  36. J.L. Putaux, HREM Study of Self-Accommodated Thermal Epsilon-Martensite in an Fe-Mn-Si-Cr-Ni Shape Memory Alloy, Acta Mater., 1996, 44, p 1701–1716.

    Article  CAS  Google Scholar 

  37. K. Yamanaka, M. Mori, and A. Chiba, Nanoarchitectured Co-Cr-Mo Orthopedic Implant Alloys: NITROGEN-Enhanced Nanostructural Evolution and its Effect on Phase Stability, Acta Biomater., 2013, 9, p 6259–6267.

    Article  CAS  PubMed  Google Scholar 

  38. Y.P. Li, J.S. Yu, and S. Kurosu, Role of Nitrogen Addition in Stabilizing the γ Phase of Biomedical Co-29Cr-6Mo Alloy, Mater. Chemphys., 2012, 133, p 29–32.

    CAS  Google Scholar 

  39. K. Yamanaka, M. Mori, and K. Kuramoto, Development of new Co-Cr-W-based Biomedical Alloys: Effects of Microalloying and Thermomechanical Processing on Microstructures and Mechanical Properties, Mater. Des., 2014, 55, p 987–998.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific Research Plan Projects of Shaanxi Education Department (Nos. 23JK0741) and Yan’an Science and Technology Major Project (Nos. 2023CYL072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, W. Impact of Porcelain Firing Cycling on the Microstructure and Mechanical Properties of Selective Laser-Melted Co-Cr-Mo-W Dental Alloys. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09683-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09683-1

Keywords

Navigation