Log in

Adsorption Capacity and Mechanism of MgO Nanomaterials Prepared by Ultrasonic Electrodeposition for Pb (II)

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study reports the successful preparation of MgO nanomaterials through ultrasonic electrodeposition. The capability and mechanism of nanomaterials in removing Pb (II) from industrial soil under varying ultrasonic powers of 100, 150, and 200 W were investigated. Scanning electron microscopy (SEM), Transmission electron microscope (TEM), and x-ray diffractometry (XRD) were employed to analyze the surface morphology and phase composition of the nanomaterials. The adsorption capacity of MgO nanomaterials for Pb (II) was significantly enhanced at an ultrasonic power of 150 W, reaching a maximum adsorption capacity of 68.9 mg g−1. The adsorption process of Pb (II) onto the surface of MgO nanomaterials was analyzed using pseudo-second-order kinetic and Langmuir models. The formation of strong chemical bonds between Pb (II) and atoms on the surface of MgO nanomaterials resulted in the unique monolayer adsorption and chemisorption characteristics observed for Pb (II), as confirmed through Fourier transform infrared spectroscopy (FTIR) analysis. MgO nanomaterials revealed distinctive monolayer adsorption and chemisorption properties for the adsorption of Pb (II). The adsorption capacity of MgO nanomaterials for Pb (II) was significantly affected by temperature, with the highest adsorption amount observed at 30 °C. Moreover, the Langmuir model effectively described the adsorption behavior of MgO for Pb (II), displaying a correlation coefficient exceeding 0.99. The results reveal the influence of ultrasonic power on the adsorption capabilities of MgO nanomaterials prepared via ultrasonic electrodeposition, with optimal adsorption performance observed for MgO nanomaterials prepared at 150 W. Moreover, the MgO nanomaterials fabricated with 150 W ultrasonic power demonstrate good pH adaptability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Savun-Hekimoglu, Z. Isler, M. Hekimoglu, S. Burak, D. Karli, A. Yucekaya, E. Akpinar, and V.S. Ediger, Optimization of Wastewater Treatment Systems for Growing Industrial Parks, Sci. Total. Environ., 2023, 905, p 167223.

    Article  CAS  PubMed  Google Scholar 

  2. L.L. Li, Y.B. Shi, Y. Huang, A.L. **ng, and H. Xue, The Effect of Governance on Industrial Wastewater Pollution in China, Int. J. Environ. Res. Public Health, 2022, 19(15), p 9316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. G. Kanat and D. Yeter, Optimization and Reduction of Industrial Load in a Wastewater Basin, Desalin. Water Treat., 2020, 205, p 316–327.

    Article  CAS  Google Scholar 

  4. Y.X. Tian, H. Zhang, S.C. Pan, Y.B. Yin, Z.Y. Jia, and H.F. Zhou, Amine-Functionalized Magnetic Microspheres from Lignosulfonate for Industrial Wastewater Purification, Int. J. Biol. Macromol., 2023, 224, p 133–142.

    Article  CAS  PubMed  Google Scholar 

  5. U. Kumari, H. Siddiqi, M. Bai, and B.C. Meikap, Calcium and Zirconium Modified Acid Activated Alumina for Adsorptive Removal of Fluoride: Performance Evaluation, Kinetics, Isotherm, Characterization and Industrial Wastewater Treatment, Adv. Power Technol., 2020, 31(5), p 2045–2060.

    Article  CAS  Google Scholar 

  6. B.Y. Zhao, J.J. He, and L. Wang, Adsorption/Desorption Performance of Cellulose Membrane for Pb (ii), Green Process. Synth., 2023, 12(1), p 20230014.

    Article  CAS  Google Scholar 

  7. Y.M. Desalegn, D.M. Andoshe, and T.D. Desissa, Composite of Bentonite/CoFe2O4/Hydroxyapatite for Adsorption of Pb (II), Mater. Res. Exp., 2021, 7(11), 115501.

    Article  Google Scholar 

  8. P. Santoso, C. Anwar, D.S. Jumina, and K.O. Suharso, Adsorption Study of Pb (II) onto a Novel Calix[4]Resorcinarene-Chitosan Hybrid, Desalin Water Treatment, 2019, 143, p 268–273.

    Article  CAS  Google Scholar 

  9. A. Alkhudhayri, F.A. Thagfan, S. Al-Quraishy, R. Abdel-Gaber, and M.A. Dkhil, Assessment of the Oxidative Status and Goblet Cell Response During Eimeriosis and After Treatment of Mice with Magnesium Oxide Nanoparticles, Saudi J. Biol. Sci., 2022, 29(2), p 1234–1238.

    Article  CAS  PubMed  Google Scholar 

  10. A. Deb, M. Kanmani, A. Debnath, K.L. Bhowmik and B. Saha, Ultrasonic Assisted Enhanced Adsorption of Methyl Orange Dye onto Polyaniline Impregnated Zinc Oxide Nanoparticles: Kinetic, Isotherm and Optimization of Process Parameters, Ultrason. Sonochem., 2019, 54, p 290–301.

    Article  CAS  PubMed  Google Scholar 

  11. B. Saha, S. Shaji, and A. Debnath, Fabrication of polyaniline based calcium ferrite nanocomposite and its application in sequestration of Victoria blue dye from wastewater, Journal of dispersion science and technology, 2023, 2273432.

  12. Y.F. Guo, C. Tan, J. Sun, W.L. Li, J.B. Zhang, and C.W. Zhao, Biomass Ash Stabilized MgO Adsorbents for CO2 Capture Application, Fuel, 2020, 259, 116298.

    Article  CAS  Google Scholar 

  13. J. Maruthai, K. Ramachandran, A. Muthukumarasamy, S. Chidabaram, M. Gaidi, and K. Daoudi, Bio Fabrication of 2D MgO/Ag Nanocomposite for Effective Environmental Utilization in Antibacterial, Anti-oxidant and Catalytic Applications, Surf. Interfaces, 2022, 30, 101921.

    Article  CAS  Google Scholar 

  14. C. Ma, H. He, F. **a, Z. **ao, and Y. Liu, Performance of Ni-SiC Composites Deposited Using Magnetic-Field-Assisted Electrodeposition Under Different Magnetic-Field Directions, Ceram. Int., 2023, 49(22), p 35907–35916.

    Article  CAS  Google Scholar 

  15. C. Ma, M. Jiang, W. Cui, and F. **a, Jet Pulse Electrodeposition and Characterization of Ni-AlN Nanocoatings in Presence of Ultrasound, Ceram. Int., 2018, 44(5), p 5163–5170.

    Article  CAS  Google Scholar 

  16. F. **a, P. Yan, C. Ma, Y. Zhang, and H. Li, Pulse-Electrodeposited Ni/W-Al2O3 Nanocomposites at Different Current Densities, J. Nanopart. Res., 2023, 25, p 208.

    Article  CAS  Google Scholar 

  17. C. Ma, D. Zhao, F. **a, H. **a, T. Williams, and H. **ng, Ultrasonic-Assisted Electrodeposition of Ni-Al2O3 Nanocomposites at Various Ultrasonic Powers, Ceram. Int., 2020, 46(5), p 6115–6123.

    Article  CAS  Google Scholar 

  18. J.K. Liu, L.J. Yang, Z.L. Song, and C. Xu, Microstructures and Capacitance Performance of MnO2 Films Fabricated by Ultrasonic-assisted Electrodeposition, Appl. Surf. Sci., 2019, 478, p 94–102.

    Article  CAS  Google Scholar 

  19. M.R. Akbarpour and F.G. Asl, Fabrication of High-Performance Graphene/Nickel-Cobalt Composite Coatings using Ultrasonic-Assisted Pulse Electrodeposition, Ceram. Int., 2023, 49(9), p 13829–13835.

    Article  CAS  Google Scholar 

  20. M.S. Rajput, P.M. Pandey, and S. Jha, Fabrication of Nano-Sized Grain Micro Features Using ultrasOnic-Assisted Jet Electrodeposition with Pulsed Current Supply, Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf., 2014, 11(228), p 1338–1349.

    Article  Google Scholar 

  21. M. Wu, W. Jia, and P. Lv, Electrodepositing Ni-TiN Nanocomposite Layers with Applying Action of Ultrasonic Waves, Proc. Eng.., 2017, 174, p 717–723.

    Article  CAS  Google Scholar 

  22. F. **a, P. Yan, C. Ma, B. Wang, and Y. Liu, Effect of Different Heat-Treated Temperatures upon Structural and Abrasive Performance of Ni-TiN Composite Nanocoatings, J. Mater. Res. Technol., 2023, 27, p 2874–2881.

    Article  CAS  Google Scholar 

  23. T. Liu, C. Li, Q. Li, L. Li, F. **a, H. **ng, and C. Ma, Synthesis and Wear Characterization of Ultrasonic Electrodeposited Ni-TiN Thin Coatings, Int. J. Electrochem. Sci., 2021, 16(3), 151028.

    Article  CAS  Google Scholar 

  24. C. Ma, D. Zhao, and Z. Ma, Effects of Duty Cycle and Pulse Frequency on Microstructures and Properties of Electrodeposited Ni-Co-SiC Nanocoatings, Ceram. Int., 2020, 46(8), p 12128–12137.

    Article  CAS  Google Scholar 

  25. X.L. Li, G. Tang, D. Zhang, L.J. Wu, S.J. Lu, Y.Z. Zhang, X. Cao, W. Cheng, J.T. Feng, W. Yan, B.Z. Pan, L. Li, Z.B. Li, and X. Zheng, Fouling Control in Ultrafiltration of Secondary Effluent Using Polyaniline/TiO2 Adsorption and Subsequent Treatment of Desorption Eluate Using Electrochemical Oxidation, Chem. Eng. J., 2020, 382, 122915.

    Article  CAS  Google Scholar 

  26. L. Tognotti, M. Flytzani-Stephanopoulos, A.F. Sarofim, H. Kopsinis, and M. Stoukides, Study of Adsorption-Desorption of Contaminants on Single Soil Particles Using the Electrodynamic Thermogravimetric Analyzer, Environ. Ence Technol., 1991, 25(1), p 104–109.

    Article  CAS  Google Scholar 

  27. H.R. Mahmoud, S.A. El-Molla, and M.A. Naghmash, Novel Mesoporous MnO2/SnO2 Nanomaterials Synthesized by Ultrasonic-Assisted Co-precipitation Method and Their Application in the Catalytic Decomposition of Hydrogen Peroxide, Ultrasonics, 2019, 95, p 95–103.

    Article  CAS  PubMed  Google Scholar 

  28. H. Doweidar, G. El-Damrawi, E. Mansour, and R.E. Fetouh, Structural Role of MgO and PbO in MgO-PbO-B2O3 Glasses as Revealed by FTIR; a New Approach, J. Non-Cryst. Solids, 2012, 358(5), p 941–946.

    Article  CAS  Google Scholar 

  29. P. Das, A. Debnath, and B. Saha, Ultrasound-Assisted Enhanced and Rapid Uptake of Anionic Dyes from the Binary System onto MnFe2O4/Polyaniline Nanocomposite at Neutral pH, Appl. Organomet. Chem., 2020, 34(8), e5711.

    Article  CAS  Google Scholar 

  30. P. Das, S. Nisa, A. Debnath, and B. Saha, Enhanced Adsorptive Removal of Toxic Anionic Dye by Novel Magnetic Polymeric Nanocomposite: Optimization of Process Parameters, J. Dispersion Sci. Technol., 2022, 43(6), p 880–895.

    Article  CAS  Google Scholar 

  31. T. Mahmood, M.T. Saddique, A. Naeem, S. Mustafa, N. Zeb, K.H. Shah, and M. Waseem, Kinetic and Thermodynamic study of Cd (II), Co (II) and Zn (II) Adsorption from Aqueous Solution by NiO, Chem. Eng. J., 2011, 171(3), p 935–940.

    Article  CAS  Google Scholar 

  32. D. Ursueguia, E. Diaz, and S. Ordonez, Adsorption of Methane and Nitrogen on Basolite MOFs: Equilibrium and Kinetic Studies, Microporous Mesoporous Mater., 2020, 298, 110048.

    Article  CAS  Google Scholar 

  33. S.K. Sahoo, G.K. Panigrahi, A. Arzoo, A. Sahoo, A.K. Pradhan, M.K. Sahu, J.K. Sahoo, and A. Dalbehera, Biological Synthesis of GO-MgO Nanomaterial using Azadirachta Indica Leaf Extract: A Potential Bio-adsorbent for Removing Cr (VI) ions from Aqueous Media, Biochem. Eng. J., 2022, 177, p 108272.

    Article  CAS  Google Scholar 

  34. I.W. Sutapa, A.W. Wahab, P. Taba, and N.L. Nafie, Synthesis and Structural Analysis of Magnesium Oxide Nanomaterial Using Ethanol as Polymerization Solvent, Indonesian J. Fund. Appl. Chem., 2019, 4(2), p 82–90.

    Article  CAS  Google Scholar 

  35. Z. Su, S.Y. Ning, Z.Y. Li, and S.C. Zhang, High-Efficiency Separation of Palladium from Nitric Acid Solution Using a Silica-Polymer-Based Adsorbent isoPentyl-BTBP/SiO2-P, J. Environ. Chem. Eng., 2022, 10(3), 107928.

    Article  CAS  Google Scholar 

  36. A. Deb, A. Debnath, and B. Saha, Sono-Assisted Enhanced Adsorption of Eriochrome Black-T Dye onto a Novel Polymeric Nanocomposite: Kinetic, Isotherm, and Response Surface Methodology Optimization, J. Dispers. Technol., 2020, 42(11), p 1579–1592.

    Article  Google Scholar 

  37. A. Deb, S. Das, and A. Debnath, Fabrication and Characterization of Organometallic Nanocomposite for Efficient Abatement of Dye Laden Wastewater: CCD Optimization, Adsorption Mechanism, Co-existing Ions, and Cost Analysis, Chem. Phys. Lett., 2023, 830, p 140820.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper was supported by the Liaoning Provincial Engineering Research Center for High-Value Utilization of Magnesite (Granted nos. LMNKY202310, LMNKZ202303 and LMNKY202309), Basic scientific research project of Liaoning Provincial Department of Education (Granted no. JYTMS20230067), General project of Education Department of Liaoning Province (Granted no. LJKZ1196), and Intercollegiate Cooperation (Collaborative Innovation) project of ordinary undergraduate colleges and universities in Liaoning Province (Granted no. L202161).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiru Zhao or Guangle Tan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Zhao, Z., He, L. et al. Adsorption Capacity and Mechanism of MgO Nanomaterials Prepared by Ultrasonic Electrodeposition for Pb (II). J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09556-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09556-7

Keywords

Navigation