Log in

On the Prediction of Flow Stress Behavior of Additively Manufactured AlSi10Mg for High Temperature Applications

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The high-temperature deformation behavior of laser powder bed fabricated (LPBF) AlSi10Mg alloy was investigated using an isothermal hot compression test over a wide range of deformation conditions (150-300 °C and 0.01-1 s−1). Different phenomenological models, namely the Johnson–Cook model, modified Johnson–Cook, strain-compensated Arrhenius equation, modified Zerilli–Armstrong model, modified Fields–Backofen model and artificial neural network (ANN) with feed-forward back propagation learning algorithm, were used for predicting the flow stress dependency on strain, strain rate, and temperature. The accuracy of the predictive capability of these models was determined using different statistical parameters such as correlation coefficient (R), average absolute relative error, and root mean square error. The modified Fields–Backofen model and strain-compensated Arrhenius model were identified as the best-suited models for predicting the flow stress behavior of additively manufactured AlSi10Mg, with an average error of 3.3% and 3.9% and correlation coefficient of 0.96 and 0.97, respectively. The ANN model exhibited the highest accuracy in predicting the hot deformation behavior of LPBF-fabricated AlSi10Mg, with an average error of 0.5% and a correlation coefficient of 0.99.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. R. Motallebi, Z. Savaedi, and H. Mirzadeh, Additive Manufacturing—A Review of Hot Deformation Behavior and Constitutive Modeling of Flow Stress, Curr. Opin. Solid State Mater. Sci., 2022, 26(3), p 100992. https://doi.org/10.1016/j.cossms.2022.100992

    Article  CAS  Google Scholar 

  2. A. Raja, S.R. Cheethirala, P. Gupta, N.J. Vasa, and R. Jayaganthan, A Review on the Fatigue Behaviour of AlSi10Mg Alloy Fabricated using Laser Powder Bed Fusion Technique, J. Mater. Res. Technol., 2022, 17, p 1013-1029.

    Article  CAS  Google Scholar 

  3. M. Hoffmann and A. Elwany, In-Space Additive Manufacturing: A Review, J. Manuf. Sci. Eng., 2023, 145(2), p 020801.

    Article  Google Scholar 

  4. Z. Wang, R. Ummethala, N. Singh, S. Tang, C. Suryanarayana, J. Eckert, and K.G. Prashanth, Selective Laser Melting of Aluminum and Its Alloys, Materials, 2020, 13(20), p 1-67.

    Article  Google Scholar 

  5. T. Hirata, T. Kimura, and T. Nakamoto, Effects of Hot Isostatic Pressing and Internal Porosity on the Performance of Selective Laser Melted AlSi10Mg Alloys, Mater. Sci. Eng. A, 2019, 2020, p 772.

    Google Scholar 

  6. S.R. Ch, A. Raja, P. Nadig, R. Jayaganthan, and N.J. Vasa, Influence of Working Environment and Built Orientation on the Tensile Properties of Selective Laser Melted AlSi10Mg Alloy, Mater. Sci. Eng. A, 2019, 750, p 141-151. https://doi.org/10.1016/j.msea.2019.01.103

    Article  CAS  Google Scholar 

  7. S. Beretta, More than 25 Years of Extreme Value Statistics for Defects: Fundamentals, Historical Developments, Recent Applications, Int. J. Fatigue, 2021, 151, p 106407.

    Article  Google Scholar 

  8. M. Bambach, I. Sizova, J. Szyndler, J. Bennett, G. Hyatt, J. Cao, T. Papke, and M. Merklein, On the Hot Deformation Behavior of Ti-6Al-4V Made by Additive Manufacturing, J. Mater. Process. Technol., 2020, 2021(288), p 116840. https://doi.org/10.1016/j.jmatprotec.2020.116840

    Article  CAS  Google Scholar 

  9. A. Tiwari, G. Singh, and R. Jayaganthan, Improved Corrosion Resistance Behaviour of AlSi10Mg Alloy Due to Selective Laser Melting, Coatings, 2023, 13(2), p 225.

    Article  CAS  Google Scholar 

  10. A. Elkholy, P. Quinn, S.M. Uí Mhurchadha, R. Raghavendra, and R. Kempers, Characterization and Analysis of the Thermal Conductivity of AlSi10Mg Fabricated by Laser Powder Bed Fusion, J. Manuf. Sci. Eng., 2022, 144(10), p 101001.

    Article  Google Scholar 

  11. P. He, H. Kong, Q. Liu, M. Ferry, J.J. Kruzic, and X. Li, Elevated Temperature Mechanical Properties of TiCN Reinforced AlSi10Mg Fabricated by Laser Powder Bed Fusion Additive Manufacturing, Mater. Sci. Eng. A, 2020, 2021(811), p 141025. https://doi.org/10.1016/j.msea.2021.141025

    Article  CAS  Google Scholar 

  12. S. Rosenthal, M. Hahn, and A.E. Tekkya, Deep Drawability of Additively Manufactured Sheets with a Structured Core, Int. J. Mater. Form., 2023, 16(2), p 1-15.

    Google Scholar 

  13. A.K. Maurya, J.T. Yeom, S.W. Kang, C.H. Park, J.K. Hong, and N.S. Reddy, Optimization of Hybrid Manufacturing Process Combining Forging and Wire-Arc Additive Manufactured Ti-6Al-4V through Hot Deformation Characterization, J. Alloys Compd., 2022, 894, p 162453. https://doi.org/10.1016/j.jallcom.2021.162453

    Article  CAS  Google Scholar 

  14. I. Sizova, A. Sviridov, M. Bambach, M. Eisentraut, S. Hemes, U. Hecht, A. Marquardt, and C. Leyens, A Study on Hot-Working as Alternative Post-Processing Method for Titanium Aluminides Built by Laser Powder Bed Fusion and Electron Beam Melting, J. Mater. Process. Technol., 2020, 2021(291), p 117024. https://doi.org/10.1016/j.jmatprotec.2020.117024

    Article  CAS  Google Scholar 

  15. C.I. Pruncu, C. Hopper, P.A. Hooper, Z. Tan, H. Zhu, J. Lin, and J. Jiang, Study of the Effects of Hot Forging on the Additively Manufactured Stainless Steel Preforms, J. Manuf. Process., 2020, 57(July), p 668-676. https://doi.org/10.1016/j.jmapro.2020.07.028

    Article  Google Scholar 

  16. P. Snopiński, K. Matus, F. Tatiček, and S. Rusz, Overcoming the Strength-Ductility Trade-off in Additively Manufactured AlSi10Mg Alloy by ECAP Processing, J. Alloys Compd., 2022, 918, p 165817.

    Article  Google Scholar 

  17. A. Hosseinzadeh, A. Radi, J. Richter, T. Wegener, S.V. Sajadifar, T. Niendorf, and G.G. Yapici, Severe Plastic Deformation as a Processing Tool for Strengthening of Additive Manufactured Alloys, J. Manuf. Process., 2021, 68, p 788-795. https://doi.org/10.1016/j.jmapro.2021.05.070

    Article  Google Scholar 

  18. W. Shen, F. Xue, C. Li, Y. Liu, X. Mo, and Q. Gao, Study on Constitutive Relationship of 6061 Aluminum Alloy Based on Johnson–Cook Model, Mater. Today Commun., 2023, 37, p 106982. https://doi.org/10.1016/j.mtcomm.2023.106982

    Article  CAS  Google Scholar 

  19. S. Gairola, G. Singh, R. Jayaganthan, and J. Ajay, High Temperature Performance of Additively Manufactured Al 2024 Alloy: Constitutive Modelling, Dynamic Recrystallization Evolution and Kinetics, J. Mater. Res. Technol., 2023, 25, p 3425-3443. https://doi.org/10.1016/j.jmrt.2023.06.102

    Article  CAS  Google Scholar 

  20. S.C. Krishna, S. Anoop, N.T.B.N. Koundinya, N.K. Karthick, P. Muneshwar, and B. Pant, Constitutive Modelling of Hot Deformation Behaviour of Nitrogen Alloyed Martensitic Stainless Steel, Trans. Indian Natl. Acad. Eng., 2020, 5(4), p 769-777. https://doi.org/10.1007/s41403-020-00182-y

    Article  Google Scholar 

  21. B. Li, Y. Duan, S. Zheng, M. Peng, M. Li, and H. Bu, Microstructural and Constitutive Relationship in Process Modeling of Hot Working: The Case of a 60Mg-30Pb-9.2Al-0.8B Magnesium Alloy, J. Mater. Res. Technol., 2023, 26, p 9139-9156.

    Article  CAS  Google Scholar 

  22. Y. Sun, L. Bao, and Y. Duan, Hot Compressive Deformation Behaviour and Constitutive Equations of Mg-Pb-Al-1B-0.4Sc Alloy, Philos. Mag., 2021, 101(22), p 2355-2376. https://doi.org/10.1080/14786435.2021.1974113

    Article  CAS  Google Scholar 

  23. W. Bao, L. Bao, D. Liu, D. Qu, Z. Kong, M. Peng, and Y. Duan, Constitutive Equations, Processing Maps, and Microstructures of Pb-Mg-Al-B-0.4Y Alloy under Hot Compression, J. Mater. Eng. Perform., 2020, 29(1), p 607-619. https://doi.org/10.1007/s11665-019-04544-8

    Article  CAS  Google Scholar 

  24. J. Cai, K. Wang, and Y. Han, A Comparative Study on Johnson Cook, Modified Zerilli–Armstrong and Arrhenius-Type Constitutive Models to Predict High-Temperature Flow Behavior of Ti-6Al-4V Alloy in α + β Phase, High Temp. Mater. Process., 2016, 35(3), p 297-307.

    Article  CAS  Google Scholar 

  25. W. Jia, S. Xu, Q. Le, L. Fu, L. Ma, and Y. Tang, Modified Fields-Backofen Model for Constitutive Behavior of as-Cast AZ31B Magnesium Alloy during Hot Deformation, Mater. Des., 2016, 106, p 120-132.

    Article  CAS  Google Scholar 

  26. Y. Duan, L. Ma, H. Qi, R. Li, and P. Li, Developed Constitutive Models, Processing Maps and Microstructural Evolution of Pb-Mg-10Al-0.5B Alloy, Mater Charact, 2017, 129(April), p 353-366. https://doi.org/10.1016/j.matchar.2017.05.026

    Article  CAS  Google Scholar 

  27. S.A. Sani, G.R. Ebrahimi, H. Vafaeenezhad, and A.R. Kiani-Rashid, Modeling of Hot Deformation Behavior and Prediction of Flow Stress in a Magnesium Alloy using Constitutive Equation and Artificial Neural Network (ANN) Model, J. Magnes. Alloy., 2018, 6(2), p 134-144. https://doi.org/10.1016/j.jma.2018.05.002

    Article  CAS  Google Scholar 

  28. X. Li, J. Wang, J. Ma, T. Yang, S. Yuan, X. Liu, Y. Feng, and P. **, Thermal Deformation Behavior of Mg-3Sn-1Mn Alloy Based on Constitutive Relation Model and Artificial Neural Network, J. Mater. Res. Technol., 2023, 24, p 1802-1815. https://doi.org/10.1016/j.jmrt.2023.03.096

    Article  CAS  Google Scholar 

  29. K.A. Babu and S. Mandal, Regression Based Novel Constitutive Analyses to Predict High Temperature Flow Behavior in Super Austenitic Stainless Steel, Mater. Sci. Eng. A, 2017, 703(July), p 187-195. https://doi.org/10.1016/j.msea.2017.07.035

    Article  CAS  Google Scholar 

  30. Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32(4), p 1733-1759.

    Article  CAS  Google Scholar 

  31. P. Tao, J. Zhong, H. Li, Q. Hu, S. Gong, and Q. Xu, Microstructure, Mechanical Properties, and Constitutive Models for Ti-6Al-4V Alloy Fabricated by Selective Laser Melting (SLM), Metals, 2019, 9(4), p 447.

    Article  CAS  Google Scholar 

  32. Y. Niu, Z. Sun, Y. Wang, and J. Niu, Phenomenological Constitutive Models for Hot Deformation Behavior of Ti6Al4V Alloy Manufactured by Directed Energy Deposition Laser, Metals, 2020, 10(11), p 1496.

    Article  CAS  Google Scholar 

  33. H. Mirzadeh, A Simplified Approach for Develo** Constitutive Equations for Modeling and Prediction of Hot Deformation Flow Stress, Metall. Mater. Trans. A, 2015, 46, p 4027-4037.

    Article  CAS  Google Scholar 

  34. H. Rastegari, M. Rakhshkhorshid, M.C. Somani, and D.A. Porter, Constitutive Modeling of Warm Deformation Flow Curves of an Eutectoid Steel, J. Mater. Eng. Perform., 2017, 26, p 2170-2178.

    Article  CAS  Google Scholar 

  35. M. Shalbafi, R. Roumina, and R. Mahmudi, Hot Deformation of the Extruded Mg-10Li-1Zn alloy: Constitutive Analysis and Processing Maps, J. Alloys Compd., 2017, 696, p 1269-1277.

    Article  CAS  Google Scholar 

  36. ASTM E209-18, Standard Practice for Compression Tests of Metallic Materials at Elevated Temperatures with Conventional or Rapid Heating Rates and Strain Rates, Annual Book of ASTM Standards, 2010

  37. A. Shokry, S. Gowid, and G. Kharmanda, An Improved Generic Johnson–Cook Model for the Flow Prediction of Different Categories of Alloys at Elevated Temperatures and Dynamic Loading Conditions, Mater. Today Commun., 2021, 27, p 102296.

    Article  CAS  Google Scholar 

  38. S.R. Ch, A. Raja, R. Jayaganthan, N.J. Vasa, and M. Raghunandan, Study on the Fatigue Behaviour of Selective Laser Melted AlSi10Mg Alloy, Mater. Sci. Eng. A, 2019, 2020(781), p 139180. https://doi.org/10.1016/j.msea.2020.139180

    Article  CAS  Google Scholar 

  39. G.R. Johnson and W.H. Cook, A Computational Constitutive Model and Data for Metals Subjected to Large Strain, High Strain Rates and High Pressures, Seventh Int. Symp. Ballist., p 541-547 (1983)

  40. S. Liu, H. Zhu, G. Peng, J. Yin, and X. Zeng, Microstructure Prediction of Selective Laser Melting AlSi10Mg using Finite Element Analysis, Mater. Des., 2018, 142, p 319-328. https://doi.org/10.1016/j.matdes.2018.01.022

    Article  CAS  Google Scholar 

  41. Y.C. Lin, X.M. Chen, and G. Liu, A Modified Johnson–Cook Model for Tensile Behaviors of Typical High-Strength Alloy Steel, Mater. Sci. Eng. A, 2010, 527(26), p 6980-6986.

    Article  Google Scholar 

  42. A. Shokry, S. Gowid, H. Mulki, and G. Kharmanda, On the Prediction of the Flow Behavior of Metals and Alloys at a Wide Range of Temperatures and Strain Rates using Johnson–Cook and Modified Johnson–Cook-Based Models: A Review, Materials, 2023, 16(4), p 1574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. C.M. Sellars and W.J. McTegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14(9), p 1136-1138.

    Article  CAS  Google Scholar 

  44. Y.Q. Cheng, H. Zhang, Z.H. Chen, and K.F. **an, Flow Stress Equation of AZ31 Magnesium Alloy Sheet during Warm Tensile Deformation, J. Mater. Process. Technol., 2008, 208(1-3), p 29-34.

    Article  CAS  Google Scholar 

  45. F.J. Zerilli and R.W. Armstrong, Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations, J. Appl. Phys., 1987, 61(5), p 1816-1825. https://doi.org/10.1063/1.338024

    Article  CAS  Google Scholar 

  46. D. Samantaray, S. Mandal, U. Borah, A.K. Bhaduri, and P.V. Sivaprasad, A Thermo-Viscoplastic Constitutive Model to Predict Elevated-Temperature Flow Behaviour in a Titanium-Modified Austenitic Stainless Steel, Mater. Sci. Eng. A, 2009, 526(1-2), p 1-6.

    Article  Google Scholar 

  47. R.S. Haridas, P. Agrawal, S. Thapliyal, S. Yadav, R.S. Mishra, B.A. McWilliams, and K.C. Cho, Strain Rate Sensitive Microstructural Evolution in a TRIP Assisted High Entropy Alloy: Experiments, Microstructure and Modeling, Mech. Mater., 2021, 156, p 103798. https://doi.org/10.1016/j.mechmat.2021.103798

    Article  Google Scholar 

  48. Q. Qin, M.L. Tian, and P. Zhang, Investigation of a Coupled Arrhenius-Type/Rossard Equation of AH36 Material, Materials, 2017, 10(4), p 407.

    Article  PubMed  PubMed Central  Google Scholar 

  49. H. Mirzadeh, J.M. Cabrera, and A. Najafizadeh, Modeling and Prediction of Hot Deformation Flow Curves, Metall. Mater. Trans. A, 2012, 43, p 108-123.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jayaganthan.

Ethics declarations

Conflict of interest

All the studies performed in the manuscript are genuine and original. There is no conflict of interest, as per our knowledge.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gairola, S., Singh, G. & Jayaganthan, R. On the Prediction of Flow Stress Behavior of Additively Manufactured AlSi10Mg for High Temperature Applications. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09553-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09553-w

Keywords

Navigation