Log in

Effect of TiCr Mass Fraction on Microstructure and Electrochemical Performance of Laser Cladded Ni-30%WC Coatings on S136 Steel

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Ni-30%WC coatings with the TiCr mass fractions of 3%, 6% and 9% were prepared on S136 steel by laser cladding, and the effects of TiCr mass fraction on the microstructure and electrochemical performance of obtained coatings were analyzed using an ultra-depth of field microscope and electrochemical workstation, respectively. The results show that the electrochemical performance of Ni-30%WC coatings is improved by the addition of TiCr, and the corrosion resistance is enhanced with the increase of TiCr mass fraction. The carrier density of Ni-30%WC-3%TiCr, -6%TiCr and -9%TiCr coatings is 7.85 × 1030, 4.78 × 1030, and 1.49 × 1030·cm−3, respectively, indicating that the density of passive films on the Ni-30%WC-9%TiCr coating is the best among the three kinds of coatings, presenting the highest corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E.D. Doyle, Y.C. Wong, and M.I. Ripley, Residual Stress Evaluation in Martensitic Stainless Steel as a Function of Gas Quenching Pressure Using Thermal Neutrons, Physica B, 2006, 385–386, p 897–899.

    Article  Google Scholar 

  2. A.N. Isfahany, H. Saghafian, and G. Borhani, The Effect of Heat Treatment on Mechanical Properties and Corrosion Behavior of AISI420 Martensitic Stainless Steel, J. Alloy. Compd., 2011, 509(9), p 3931–3936.

    Article  CAS  Google Scholar 

  3. Y. Zhou, L. Duan, X. Ji, S. Wen, Q. Wei, F. Ye, and Y. Shi, Comparisons on Microstructure, Mechanical and Corrosion Resistant Property of S136 Mold Steel Processed by Selective Laser Melting From two Pre-alloy Powders with Trace Element Differences, Opt. Laser Technol., 2018, 108, p 81–89.

    Article  CAS  Google Scholar 

  4. H. Hu, S.F. Wen, L.C. Duan, C. Wang, K.Y. Chen, Q.S. Wei, Y. Zhou, and Y.S. Shi, Enhanced Corrosion Behavior of Selective Laser Melting S136 Mould Steel Reinforced with Nano-TiB2, Opt. Laser Technol., 2019, 119, p 105588.

    Article  Google Scholar 

  5. E. Liu, X. Chen, Z.M. Pan, J. Xu, Y.B. Chen, D.B. Shan, and B. Guo, Enhanced Corrosion Performance of S136 Steel after Nanosecond Pulsed Laser Polishing, J. Mater. Res. Technol., 2022, 20, p 1328–1340.

    Article  CAS  Google Scholar 

  6. R. Ahmadi-Pidani, R. Shoja-Razavi, R. Mozafarinia, and H. Jamali, Improving the Hot Corrosion Resistance of Plasma Sprayed Ceria–Yttria Stabilized Zirconia Thermal Barrier Coatings by Laser Surface Treatment, Mater. Des., 2014, 57, p 336–341.

    Article  CAS  Google Scholar 

  7. P.W. Leech, Laser Surface Melting of a Complex High Alloy Steel, Mater. Design, 2014, 54, p 539–543.

    Article  CAS  Google Scholar 

  8. S.H. Wang, L.D. Zhu, J.Y.H. Fuh, H.Q. Zhang, and W.T. Yan, Multi-physics Modeling and Gaussian Process Regression Analysis of Cladding Track Geometry for Direct Energy Deposition, Opt. Lasers Eng., 2020, 127, p 105950.

    Article  Google Scholar 

  9. S. Zhou, X. Dai, and X. Zeng, Effects of Processing Parameters on Structure of Ni-Based WC Composite Coatings During Laser Induction Hybrid Rapid Cladding, Appl. Surf. Sci., 2009, 255(20), p 8494–8500.

    Article  CAS  Google Scholar 

  10. M. Li, B. Han, L. Song, and Q. He, Enhanced Surface Layers by Laser Cladding and Ion Sulfurization Processing Towards Improved Wear-Resistance and Self-Lubrication Performances, Appl. Surf. Sci., 2020, 503, p 144226.

    Article  CAS  Google Scholar 

  11. C. Liu, C. Li, Z. Zhang, S. Sun, M. Zeng, F. Wang, Y. Guo, and J. Wang, Modeling of Thermal Behavior and Microstructure Evolution During Laser Cladding of AlSi10Mg Alloys, Opt. Laser Technol., 2020, 1(123), p 105926.

    Article  Google Scholar 

  12. S.P. Sharma, D.K. Dwivedi, and P.K. Jain, Effect of Ti Addition on the Microstructure, Hardness and Abrasive Wear Behavior of Flame Sprayed Ni Based Coatings, Wear, 2009, 267(5–8), p 853–859.

    Article  CAS  Google Scholar 

  13. G. Chun, J.S. Zhou, J.R. Zhao, L.Q. Wang, Y.J. Yu, and H.D. Zhou, Effects of WC-Ni Content on Microstructure and Wear Resistance of Laser Cladding Ni-Based Alloys Coating, Surf. Coat. Technol., 2012, 206(8–9), p 2064–2071.

    Google Scholar 

  14. K.S. Ravichandran, Fracture Toughness of Two Phase WC-Co Cermets, Acta Metall. Mater. E, 2015, 42(1), p 143–150.

    Article  Google Scholar 

  15. Q. Feng, X. Song and X. Liu, Compression Deformation of WC-Atomistic Description of Hard Ceramic Material, Nanotechnol., 2017, 28(8), p 475709.

    Article  Google Scholar 

  16. Q. Zhang, Q. Zhao, and H. Su, A Systematic Investigation on the Diamond Wear Mechanism During the Dry Scratching of WC/Co, Int. J. Refract Metal Hard Mater., 2018, 70, p 184–190.

    Article  CAS  Google Scholar 

  17. M.R. Fernández, A. García, J.M. Cuetos, R. González, A. Noriega, and M. Cadenas, Effect of Actual WC Content on the Reciprocating Wear of a Laser Cladding NiCrBSi Alloy Reinforced with WC, Wear, 2015, 324–325, p 80–89.

    Article  Google Scholar 

  18. P. Wu, H.M. Du, X.L. Chen, Z.Q. Li, H.L. Bai, and E.Y. Jiang, Influence of WC Particle Behavior on the Wear Resistance Properties of Ni-WC Composite Coatings, Wear, 2004, 257(1–2), p 142–147.

    Article  CAS  Google Scholar 

  19. K. Shi, K. Zhou, Z. Li, X. Zan, S. Xu, and Z. Min, Effect of adding method of Cr on microstructure and properties of WC-9Ni-2Cr cemented carbides, Int. J. Refract. Met. H., 2013, 38, p 1–6.

    Article  CAS  Google Scholar 

  20. G.P. Li, Y.B. Peng, L.W. Yan, T. Xu, J.Z. Long, and F.H. Luo, Effects of Cr Concentration on the Microstructure and Properties of WC-Ni Cemented Carbides, J. Mater. Res. Technol., 2020, 9(1), p 902–907.

    Article  CAS  Google Scholar 

  21. R.D.O. Calderon, C. Edtmaier, and W.D. Schubert, Novel Binders for WC-Based Cemented Carbides with High Cr Contents, Int. J. Refract Metal Hard Mater., 2019, 85, p 105063.

    Article  Google Scholar 

  22. M.Y. Li, B. Han, and Y. Wang, Effects of Ti on the Microstructure and Property of Laser Cladding Ni-Based Ceramic Coating, Optik, 2017, 130, p 1032–1038.

    Article  CAS  Google Scholar 

  23. W. Zhao and D.J. Kong, Effects of Laser Power on Immersion Corrosion and Electrochemical Corrosion Performances of Laser Thermal Sprayed Amorphous AlFeSi Coatings, Appl. Surf. Sci., 2019, 481, p 161–173.

    Article  CAS  Google Scholar 

  24. M.Y. Lu, J. Mead, Y.Q. Wu, H. Russell, and H. Huang, A Study of the Deformation and Failure Mechanisms of Protective Intermetallic Coatings on AZ91 Mg Alloys Using Micro-Cantilever Bending, Mater Charact, 2016, 120, p 337–344.

    Article  CAS  Google Scholar 

  25. S. Zhou, X. Zeng, Q. Hu, and Y. Huang, Analysis of Crack Behavior for Ni-Based WC Composite Coatings by Laser Cladding and Crack-Free Realization, Appl. Surf. Sci., 2008, 255, p 1646–1653.

    Article  CAS  Google Scholar 

  26. J.Q. Zhang, J.B. Lei, Z.J. Gu, F.L. Tantai, H.F. Tian, J.J. Han, and Y. Fang, Effect of WC-12Co Content on Wear and Electrochemical Corrosion Properties of Ni-Cu/WC-12Co Composite Coatings Deposited by Laser Cladding, Surf. Coat. Technol., 2020, 393, p 125807.

    Article  CAS  Google Scholar 

  27. P. Chivavibul, M. Watanabe, S. Kuroda, and M. Komatsu, Evaluation of HVOF-Sprayed WC-Co Coatings for Wood Machining, Surf. Coat. Technol., 2008, 202(21), p 5127–5135.

    Article  CAS  Google Scholar 

  28. M.Y. Zhang, M. Li, J. Chi, S.F. Wang, S. Yang, J. Yang, and Y.J. Wei, Effect of Ti on Microstructure Characteristics, Carbide Precipitation Mechanism and Tribological Behavior of Different WC Types Reinforced Ni-Based Gradient Coating, Surf. Coat. Technol., 2019, 374, p 645–655.

    Article  CAS  Google Scholar 

  29. Q. Zhang, N. Lin, and Y. He, Effects of Mo Additions on the Corrosion Behaviour of WC-TiC-Ni Hardmetals in Acidic Solutions, Int. J. Refract. Met. Hard Mater., 2013, 38, p 15–25.

    Article  Google Scholar 

  30. Y.X. Guo, X.J. Shang, and Q.B. Liu, Microstructure and Properties of In-Situ TiN Reinforced Laser Cladding CoCr2FeNiTi High-Entropy Alloy Composite Coatings, Surf. Coat. Technol., 2018, 344, p 353–358.

    Article  CAS  Google Scholar 

  31. A.C. Lloyd, J.J. Noel, and S. Mcintyre, Cr, Mo and W Alloying Additions in Ni and their Effect on Passivity, Electrochim. Acta, 2004, 49, p 3015–3027.

    Article  CAS  Google Scholar 

  32. S. Chen, W.H. **ong, Z.H. Yao, G.P. Zhang, X. Chen, B. Huang, and Q.Q. Yang, Corrosion Behavior of Ti(C, N)-Ni/Cr Cermets in H2SO4 Solution, Int. J. Refract Metal Hard Mater., 2014, 47, p 139–144.

    Article  CAS  Google Scholar 

  33. M. Mahdavian, and M. Attar, Another Approach in Analysis of Paint Coatings with EIS Measurement: Phase Angle at High Frequencies, Corros. Sci., 2006, 48, p 4152–4157.

    Article  CAS  Google Scholar 

  34. X.C. Zhao, W.H. Xu, B.X. Huang, J. Ma, H. Chen, X.H. Hao, B. Ge, and C.Z. Wang, Effect of TiH2 Intermediate on the Structure and Properties of TiO2 Coating Induced on Titanium by Induction Heating and its Multifunctional Mechanism, Appl. Surf. Sci., 2021, 536, p 147968.

    Article  CAS  Google Scholar 

  35. Y. Zhao, C.Y. Wu, S.F. Zhou, J.J. Yang, W. Li, and L.C. Zhang, Selective Laser Melting of Ti-TiN Composites: Formation Mechanism and Corrosion Behaviour in H2SO4/HCl Mixed Solution, J. Alloy. Compd., 2021, 863, p 158721.

    Article  CAS  Google Scholar 

  36. J.L. Lv, Effect of Grain Size on Mechanical Property and Corrosion Resistance of the Ni-Based Alloy 690, J. Mater. Sc. Technol., 2018, 34, p 1685–1691.

    Article  Google Scholar 

  37. L.M. Zhang, S.D. Zhang, A. Ma, A.J. Umoh, H.X. Hu, Y.G. Zheng, B.J. Yang, and J.Q. Wang, Influence of Cerium Content on the Corrosion Behavior of Al-Co-Ce Amorphous Alloy in 0.6 M NaCl Solution, J. Mater. Sc. Technol., 2019, 35, p 1378–1387.

    Article  CAS  Google Scholar 

  38. J. Liu, H. Liu, X.H. Tian, H.F. Yang, and J.B. Hao, Microstructural Evolution and Corrosion Properties of Ni-Based Alloy Coatings Fabricated by Multi-layer Laser Cladding on Cast Iron, J. Alloy. Compd., 2020, 822, p 153708.

    Article  CAS  Google Scholar 

  39. R. Steinlechner, C.R. de Oro, T. Koch, P. Linhardt, and W.D. Schubert, A Study on WC-Ni Cemented Carbides: Constitution, Alloy Compositions and Properties, Including Corrosion Behaviour, Int. J. Refractory Metals Hard Mater., 2022, 1(103), p 105750.

    Article  Google Scholar 

  40. Y.P. Wu, M.G. Zhu, P. Shen, Y.K. Fang, Q.S. Sun, L.L. Zhang, C. Wang, X.L. Song, M. Zheng, and W. Li, A Design of Sintered Nd-Fe-B Magnet Exhibiting Superior Corrosion Resistance Based on the Metallurgical Behavior of Ni and Cr, J. Mater. Res. Technol., 2023, 24, p 6369–6377.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kong Dejun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, G., Yongfu, X., Chunyuan, Z. et al. Effect of TiCr Mass Fraction on Microstructure and Electrochemical Performance of Laser Cladded Ni-30%WC Coatings on S136 Steel. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08930-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08930-1

Keywords

Navigation