Log in

The Interaction between Mg17Al12 Precipitate and {10–12} Twin in Mg-Al Alloy: A Molecular Dynamics Simulation Study

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Molecular dynamics simulation was applied to investigate the interaction between precipitate and \(\left\{ {10\overline{1}2} \right\}\) twin in Mg-Al alloy in this work. Three sets of simulation including twin nucleation, propagation and growth affected by precipitate were performed. The results show the introduction of precipitate has little effect on neither the homogeneous twin nucleation at random site inside the grain nor the heterogeneous nucleation at grain boundary. During twin propagation, the blocking effect of precipitate to the twin tip depends on its size. The twin tip can bypass the precipitate when the precipitate is not long enough. When the length of precipitate is much larger than the thickness of twin, the twin tip will be completely blocked by the precipitate with elastic bending occurring at the junction. During the twin growth, it is found that the precipitate plays not only an obstacle but a source for the twinning dislocations gliding along the twin boundary. The blocking effect of precipitate on twin growth shows a size effect. The influences of width and thickness on precipitation hardening are significantly greater than that of length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M.A. Gharghouri, G.C. Weatherly, and J.D. Embury, The Interaction of Twins and Precipitates in a Mg-77 at.% A1 Alloy, Philos. Mag. A., 1998, 78, p 1137–1149.

    Article  CAS  Google Scholar 

  2. C.R. Hutchinson, J.F. Nie, and S. Gorsse, Modeling the Precipitation Processes and Strengthening Mechanisms in a Mg-Al-(Zn) AZ91 Alloy, Metall. Mater. Trans. A., 2005, 36, p 2093–2105.

    Article  Google Scholar 

  3. N. Stanford, J. Geng, Y. Chun, C. Davies, J. Nie, and M. Barnett, Effect of Plate-Shaped Particle Distributions on the Deformation Behaviour of Magnesium Alloyaz91 in Tension and Compression, Acta Mater., 2012, 60, p 218–228.

    Article  CAS  Google Scholar 

  4. J.D. Robson, N. Stanford, and M.R. Barnett, Effect of Precipitate Shape and Habit on Mechanical Asymmetry in Magnesium Alloys, Metall. Mater. Trans. A., 2012, 44, p 2984–2995.

    Article  Google Scholar 

  5. J. Jain, P. Cizek, W.J. Poole, and M.R. Barnett, The Role of Back Stress Caused by Precipitates on Twinning in a Mg–6Zn Alloy, Mater. Sci. Eng. A., 2015, 647, p 66–73.

    Article  CAS  Google Scholar 

  6. J.F. Nie, Precipitation and Hardening in Magnesium Alloys, Metall. Mater. Trans. A., 2012, 43A, p 3891–3939.

    Article  Google Scholar 

  7. J.D. Robson, N. Stanford, and M.R. Barnett, Effect of Precipitate Shape on Slip and Twinning in Magnesium Alloys, Acta Mater., 2011, 59, p 1945–1956.

    Article  CAS  Google Scholar 

  8. J.T. Wang, M. Ramajayam, E. Charrault, and N. Stanford, Quantification of Precipitate Hardening of Twin Nucleation and Growth in Mg and Mg-5Zn Using Micro-Pillar Compression, Acta Mater., 2019, 163, p 68–77.

    Article  CAS  Google Scholar 

  9. J.F. Nie, Effects of Precipitate Shape and Orientation on Dispersion Strengthening in Magnesium Alloys, Scripta Mater., 2003, 48, p 1009–1015.

    Article  CAS  Google Scholar 

  10. J.D. Robson, The Effect of Internal Stresses due to Precipitates on Twin Growth in Magnesium, Acta Mater., 2016, 121, p 277–287.

    Article  CAS  Google Scholar 

  11. M.R. Barnett, H. Wang, and T.T. Guo, An Orowan Precipitate Strengthening Equation for Mechanical Twinning in Mg, Int. J. Plast., 2019, 112, p 108–122.

    Article  CAS  Google Scholar 

  12. G. Esteban-Manzanares, A.X. Ma, I. Papadimitriou, E. Martínez, and J. LLorca, Basal Dislocation/Precipitate Interactions in Mg-Al Alloys: an Atomistic Investigation, Modell. Simul. Mater. Sci. Eng., 2019, 27, p 075003.

    Article  CAS  Google Scholar 

  13. M. Liao, B. Li, and M.F. Horstemeyer, Interaction Between Prismatic Slip and a Mg17Al12 Precipitate in Magnesium, Comp. Mater. Sci., 2013, 79, p 534–539.

    Article  CAS  Google Scholar 

  14. H.D. Fan, Y.X. Zhu, J.A. El-Awady, and D. Raabe, Precipitation Hardening Effects on Extension Twinning in Magnesium Alloys, Int. J. Plast., 2018, 106, p 186–202.

    Article  CAS  Google Scholar 

  15. H.D. Fan, Y.X. Zhu, and Q.Y. Wang, Effect of Precipitate Orientation on the Twinning Deformation in Magnesium Alloys, Comp. Mater. Sci., 2018, 155, p 378–382.

    Article  CAS  Google Scholar 

  16. N. Stanford and M.R. Barnett, Effect of Particles on the Formation of Deformation Twins in a Magnesium-Based Alloy, Mater. Sci. Eng. A., 2009, 516, p 226–234.

    Article  Google Scholar 

  17. J. Jain, W.J. Poole, C.W. Sinclair, and M.A. Gharghouri, Reducing the Tension–Compression Yield Asymmetry in a Mg–8Al–0.5Zn Alloy Via Precipitation, Scripta Mater., 2010, 62, p 301–304.

    Article  CAS  Google Scholar 

  18. J. Geng, Y.B. Chun, N. Stanford, C.H.J. Davies, J.F. Nie, and M.R. Barnett, Processing and Properties of Mg-6Gd-1Zn-0.6Zr Part 2 Mechanical Properties and Particle Twin Interactions, Mater. Sci. Eng. A., 2011, 528, p 3659–3665.

    Article  Google Scholar 

  19. X.Y. Liu, J.B. Adams, F. Ercolessi, and J.A. Moriarty, EAM Potential for Magnesium from Quantum Mechanical Forces, Model. Simul. Mater. Sci. Eng., 1996, 4, p 293–303.

    Article  CAS  Google Scholar 

  20. S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys., 1995, 117, p 1–19.

    Article  CAS  Google Scholar 

  21. A. Stukowski, Visualization and Analysis of Atomistic Simulation Data with OVITO- the Open Visualization Tool, Model. Simul. Mater. Sci. Eng., 2010, 18, p 015012.

    Article  Google Scholar 

  22. J.D. Honeycutt and H.C. Andersen, Molecular Dynamics Study of Melting and Freezing of Small Lennard-Jones Clusters, J. Phys. Chem., 1987, 91, p 4950–4963.

    Article  CAS  Google Scholar 

  23. H. Tsuzuki, P.S. Branicio, and J.P. Rino, Structural Characterization of Deformed Crystals by Analysis of Common Atomic Neighborhood, Comput. Phys. Commun., 2007, 177, p 518–523.

    Article  CAS  Google Scholar 

  24. C.D. Barrett, M.A. Tschopp, and H. El Kadiri, Automated Analysis of Twins in Hexagonal Close-Packed Metals using Molecular Dynamics, Scripta Mater., 2012, 66, p 666–669.

    Article  CAS  Google Scholar 

  25. C.D. Barrett, Analysis of Twinning Via Automated Atomistic Post-Processing Methods, Philos. Mag., 2017, 97, p 1102–1128.

    Article  CAS  Google Scholar 

  26. J. Wang, J.P. Hirth, and C.N. Tomé, (-1012) Twinning Nucleation Mechanisms in Hexagonal-Close-Packed Crystals, Acta Mater., 2009, 57, p 5521–5530.

    Article  CAS  Google Scholar 

  27. J. Wang, I.J. Beyerlein, and C.N. Tomé, Reactions of Lattice Dislocations with Grain Boundaries in Mg: Implications on the Micro Scale from Atomic-Scale Calculations, Int. J. Plast., 2014, 56, p 156–172.

    Article  CAS  Google Scholar 

  28. S. Tang, G. Zhang, N. Zhou, T.F. Guo, and X.X. Huang, Uniaxial Stress-Driven Grain Boundary Migration in Hexagonal Close-Packed (HCP) Metals: Theory and MD Simulations, Int. J. Plast., 2017, 95, p 82–104.

    Article  Google Scholar 

  29. J.D. Robson, N. Stanford, and M.R. Barnett, Effect of Particles in Promoting Twin Nucleation in a Mg–5 wt.% Zn Alloy, Scripta Mater., 2010, 63, p 823–826.

    Article  CAS  Google Scholar 

  30. J. Wang, L. Liu, C.N. Tomé, S.X. Mao, and S.K. Gong, Twinning and De-Twinning via Glide and Climb of Twinning Dislocations along Serrated Coherent Twin Boundaries in Hexagonal-close-packed Metals, Mater. Res. Lett., 2013, 1, p 81–88.

    Article  Google Scholar 

  31. H.X. Zong, X.D. Ding, T. Lookman, J. Li, and J. Sun, Uniaxial Stress-Driven Coupled Grain Boundary Motion in Hexagonal Close-Packed Metals: A Molecular Dynamics Study, Acta Mater., 2015, 82, p 295–303.

    Article  CAS  Google Scholar 

  32. H.X. Zong, X.D. Ding, T. Lookman, J. Li, J. Sun, E.K. Cerreta, J.P. Escobedo, F.L. Addessio, and C.A. Bronkhorst, Collective Nature of Plasticity in Mediating Phase Transformation under Shock Compression, Phys. Rev B, 2014, 89, p 220101.

    Article  Google Scholar 

  33. C.L. Xu, L. Yuan, D.B. Shan, and B. Guo, 10–12 Twin Boundaries Migration Accompanied by Void in Magnesium, Comp. Mater. Sci., 2020, 184, p 109857.

    Article  CAS  Google Scholar 

  34. N. Stanford, A.S. Taylor, P. Cizek, F. Siska, M. Ramajayam, and M.R. Barnett, 10–12 Twinning in Magnesium-Based Lamellar Microstructures, Scripta Mater., 2012, 67, p 704–707.

    Article  CAS  Google Scholar 

  35. J. Wang and I.J. Beyerlein, Atomic Structures of Symmetric Tilt Grain Boundaries in Hexagonal Close Packed (hcp) Crystals, Model. Simul. Mat. Sci. Eng., 2012, 20, p 024002.

    Article  Google Scholar 

  36. J.P. Hirth and R.C. Pond, Steps, Dislocations and Disconnections as Interface Defects Relating to Structure and Phase Transformations, Acta Mater., 1996, 44, p 4749–4763.

    Article  CAS  Google Scholar 

  37. R.C. Pond and J.P. Hirth, Defects at Surfaces and Interfaces, Solid State Phys., 1994, 47, p 287–365.

    Article  CAS  Google Scholar 

  38. J.P. Hirth, J. Wang, and C.N. Tomé, Disconnections and Other Defects Associated with Twin Interfaces, Prog. Mater. Sci., 2016, 83, p 417–471.

    Article  Google Scholar 

  39. J. Wang, S.K. Yadav, J.P. Hirth, C.N. Tomé, and I.J. Beyerlein, Pure-Shuffle Nucleation of Deformation Twins in Hexagonal-Close-Packed Metals, Mater. Res. Lett., 2013, 1, p 126–132.

    Article  CAS  Google Scholar 

  40. J. Tang, W. Jiang, Q. Wang, X. Tian, D. Wei, and H. Fan, Hardening Effects of Sheared Precipitates on 11–21 Twinning Inmagnesium Alloys, J. Magnes. Alloy., 2021 https://doi.org/10.1016/j.jma.2021.06.026

    Article  Google Scholar 

  41. C.D. Barrett and H.E. Kadiri, Impact of Deformation Faceting on 10–12 {10-11} and 10–13 Embryonic Twin Nucleation in Hexagonal Close-Packed Metals, Acta Mater., 2014, 70, p 137–161.

    Article  CAS  Google Scholar 

  42. X. Tang and Y. Guo, The Engulfment of Precipitate by Extension Twinning in Mg-Al Alloy, Scripta Mater., 2020, 188, p 195–199.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (12072211, 12232008), the Foundation of Key laboratory (2022JCJQLB05703), the Sichuan Province Science and Technology Project (2023NSFSC0914) and the Fundamental Research Funds for the Central Universities (20826041F4190).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanlong Xu.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Yuan, L. & Fan, H. The Interaction between Mg17Al12 Precipitate and {10–12} Twin in Mg-Al Alloy: A Molecular Dynamics Simulation Study. J. of Materi Eng and Perform 33, 4883–4897 (2024). https://doi.org/10.1007/s11665-023-08314-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08314-5

Keywords

Navigation