Log in

Effect of Electrodeposition Method on the Abrasion Resistance of Ni-SiC Composite Nanocoatings

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This work reports the deposition of Ni-SiC composite nanocoatings (CNCs) on Q235 steel surface through different approaches, including direct current electrodeposition (DCE), pulse current electrodeposition (PCE), and ultrasonic-assisted pulse current electrodeposition (UPCE), respectively. The surface morphology, phase structure, SiC content, and microhardness of Ni-SiC CNCs were investigated via scanning electron microscopy, x-ray diffraction, energy dispersive spectroscopy, microhardness tester, and wear tester respectively. The results indicated that Ni-SiC CNCs fabricated via DCE acquired a porous structure, whereas those fabricated via UPCE exhibited a smooth surface. The diffraction angles of Ni grain were observed at 44.6°, 52.2°, and 78.3°, while the SiC exhibited the diffraction peak at 34.2°, 41.6°, and 59.7°. The UPCE approach yielded the highest SiC content and microhardness values for Ni-SiC CNCs, at 853.6 HV and 8.91 wt.%, respectively. Furthermore, the Ni-SiC CNCs deposited using the UPCE technique had depths of only 14.3 μm, demonstrating the best abrasion resistance. Ni-SiC CNCs produced with UPCE had a compact and fine microstructure with an excellent microhardness value, which effectively prevented surface damage. This study can provide a new method for preparing the nickel-based nanocoatings with excellent wear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Srivastava, G.V. William, A. Jain, and K.S. Rajam, Influence of SiC Particle Size on the Structure and Tribological Properties of Ni-Co Composites, Surf. Coat. Technol., 2007, 202(2), p 310–318.

    Article  CAS  Google Scholar 

  2. W. Jiang, L. Shen, M. Qiu, X. Wang, M. Fan, and Z. Tian, Preparation of Ni-SiC Composite Coatings by Magnetic Field-Enhanced Jet Electrodeposition, J. Alloy Compos., 2018, 762, p 115–124.

    Article  CAS  Google Scholar 

  3. W.Q. Liu, W.N. Lei, Y. Shen, C.Y. Wang, H.F. Qian, and Q.L. Li, Performance Characterization and Preparation of Ni-SiC Nanocomposites Based on SCF-CO2, Integr. Ferroelectr., 2017, 179(1), p 45–55.

    Article  CAS  Google Scholar 

  4. N. Wu, S. Ju, Y.D. Wang, and D.D. Chen, Fabrication of Ni@SiC Composite Nanofibers by Electrospinning and Autocatalytic Electroless Plating Techniques, Results Phys., 2019, 12, p 853–858.

    Article  Google Scholar 

  5. H.M. Kan, X.J. Feng, X.D. Wei, N. Zhang, X.Y. Wang, and H.B. Long, Effects of Surfactants SDS and CTAB on Ni-SiC Deposition, J. Wuhan Univ. Technol. Mater. Sci. Edit., 2018, 33(4), p 836–842.

    Article  CAS  Google Scholar 

  6. F. **a, J. Tian, C. Ma, M. Potts, and X. Guo, Effect of Pulse Frequency on Microstructural, Nanomechanical, and Wear Properties of Electrodeposited Ni-TiN Composite Coatings, J. Appl. Phys, 2014, 116, p 234302.

    Article  Google Scholar 

  7. S. Pinate, E. Ghassemali, and C. Zanella, Strengthening Mechanisms and Wear Behavior of Electrodeposited Ni-SiC Nanocomposite Coatings, J. Mater. Sci., 2022, 57(35), p 16632–16648.

    Article  CAS  Google Scholar 

  8. P.C. Huang, K.H. Hou, J.J. Hong, M.H. Lin, and G.L. Wang, Study of Fabrication and Wear Properties of Ni-SiC Composite Coatings on A356 Aluminum Alloy, Wear, 2021, 477, p 203772.

    Article  CAS  Google Scholar 

  9. Y. Zhang, L.X. Wei, H.B. Zhang, J.D. Wang, C.Y. Ma, and F.X. Xu, Study on Magnetic-Field-Assisted Electrodeposited Ni-SiC Nanocomposites, J. Mater. Eng. Perform., 2021, 31(1), p 602–612.

    Article  Google Scholar 

  10. C.Y. Li, F.F. **a, C.Y. Ma, and Q. Li, Research on the Corrosion Behavior of Ni-SiC Nanocoating Prepared Using a Jet Electrodeposition Technique, J. Mater. Eng. Perform., 2021, 30(8), p 6336–6344.

    Article  CAS  Google Scholar 

  11. C.Y. Ma, D.Q. Zhao, H.Z. **a, F.F. **a, Z.P. Ma, and T. Williams, Microstructure and Properties of Ni-SiC Nanocomposites Fabricated by Ultrasonic-Assisted Electrodeposition, Int. J. Electrochem. Sci., 2014, 15(5), p 4015–4031.

    Article  Google Scholar 

  12. V. Zarghami and M. Ghorbani, Alteration of Corrosion and Nanomechanical Properties of Pulse Electrodeposited Ni/SiC Nanocomposite Coatings, J. Alloys Compd., 2014, 598, p 236–242.

    Article  CAS  Google Scholar 

  13. X.Y. Wang, H.X. Cui, Q. Zhou, X.L. Zhang, and Y.R. Zhang, Microhardness and Corrosion Resistance of Electrodeposited Ni-SiC-BN Composite Coatings, Int. J. Electrochem. Sci., 2011, 17(6), p 220677.

    Article  Google Scholar 

  14. H.J. Liu, H. Wang, W.J. Ying, W.Q. Liu, Y. Wang, and Q. Li, Influences of Duty Cycle and Pulse Frequency on Properties of Ni-SiC Nanocomposites Fabricated by Pulse Electrodeposition, Int. J. Electrochem. Sci., 2020, 15(10), p 10550–10569.

    Article  Google Scholar 

  15. H.B. Zhang, J.D. Wang, S.X. Chen, H. Wang, Y. He, and C.Y. Ma, Ni-SiC Composite Coatings with Improved Wear and Corrosion Resistance Synthesized via Ultrasonic Electrodeposition, Ceram. Int., 2021, 47(7), p 9437–9446.

    Article  CAS  Google Scholar 

  16. P. Renner, A. Raut, and H. Liang, High-Performance Ni-SiC Coatings Fabricated by Flash Heating, Lubricants, 2022, 10(3), p 42.

    Article  CAS  Google Scholar 

  17. T.P. Lai, C. Duong-Viet, and G. Tuci, Graphite Felt-Sandwiched Ni/SiC Catalysts for the Induction Versus Joule-Heated Sabatier Reaction: Assessing the Catalyst Temperature at the Nanoscale, ACS Sustain. Chem. Eng., 2022, 1, p 622–632.

    Google Scholar 

  18. W. Liu, K. Jiang, Q. Li, C. Ma, and F. **a, Jet Pulse Electrodeposited Ni-SiC Thin Coatings by Using Experimental System Designed for Potential Industrial Application, Int. J. Electrochem. Sci., 2021, 16(4), p 21044.

    Article  CAS  Google Scholar 

  19. F.F. **a, W.C. Jia, C.Y. Ma, and J. Wang, Synthesis of Ni-TiN Composites through Ultrasonic Pulse Electrodeposition with Excellent Corrosion and Wear Resistance, Ceram. Int, 2018, 44(1), p 766–773.

    Article  CAS  Google Scholar 

  20. C. Ma, W. Yu, M. Jiang, and F. **a, Jet Pulse Electrodeposition and Characterization of Ni-AlN Nanocoatings in Presence of Ultrasound, Ceram. Int, 2018, 44(5), p 5163–5170.

    Article  CAS  Google Scholar 

  21. G. Gyawali, S.H. Cho, D.J. Woo, and S.W. Lee, Pulse Electrodeposition and Characterisation of Ni-SiC Composite Coatings in Presence of Ultrasound, Trans. Inst. Met. Finish., 2012, 90(5), p 274–280.

    Article  CAS  Google Scholar 

  22. V. Torabinejad, M. Aliofkhazraei, A.S. Rouhaghdam, and M.H. Allahyarzadeh, Tribological Properties of Ni-Fe-Co Multilayer Coatings Fabricated by Pulse Electrodeposition, Tribol. Int., 2017, 106, p 34–40.

    Article  CAS  Google Scholar 

  23. T.X. Liu, C.Y. Li, Q. Li, L.Z. Li, F.F. **a, H.Y. **ng, and C.Y. Ma, Synthesis and Wear Characterization of Ultrasonic Electrodeposited Ni-TiN Thin Coatings, Int. J. Electrochem. Sci., 2021, 16(1), p 151028.

    Article  CAS  Google Scholar 

  24. Y. Liu, X.G. Han, L. Kang, and Q. Li, Process Prediction of Ni-SiC Coatings Based on RBF-BP Model, J. Indian Chem. Soc., 2022, 99(7), p 100513.

    Article  CAS  Google Scholar 

  25. B.S. Li and W.W. Zhang, Electrochemical Deposition of Ni-Co/SiC Nanocomposite Coatings for Marine Environment, Int. J. Electrochem. Sci., 2017, 12(8), p 7017–7030.

    Article  CAS  Google Scholar 

  26. C. Zanella, M. Lekka, and P.L. Bonora, Effect of Ultrasound Vibration during Electrodeposition of Ni-SiC Nanocomposite Coatings, Surf. Eng., 2010, 26(7), p 511–518.

    Article  CAS  Google Scholar 

  27. F.F. **a, A. Yang, and Q. Li, Preparation and Wear Assessment of Ultrasonic Electrodeposited Ni-TiN Thin Films, Ceram. Int., 2018, 44(10), p 11070–11076.

    Article  CAS  Google Scholar 

  28. A.B. Radwan, R.A. Shakoor, and A. Popelka, Improvement in Properties of Ni-B Coatings by the Addition of Mixed Oxide Nanoparticles, Int. J. Electrochem. Sci., 2015, 10(9), p 7548–7562.

    Article  CAS  Google Scholar 

  29. M.M. Yusuf, A.B. Radwan, R.A. Shakoor, M. Awais, A.M. Abdullah, M.F. Montemor, and R. Kahraman, Synthesis and Characterization of Ni-B/Ni-P-CeO2 Duplex Composite Coatings, J. Appl. Electrochem., 2018, 48(4), p 391–404.

    Article  CAS  Google Scholar 

  30. S. Singh, S. Samanta, A.K. Das, and R.R. Sahoo, Hydrophobic Reduced Graphene Oxide-Based Ni Coating for Improved Tribological Application, J. Mater. Eng. Perform., 2019, 28(6), p 3704–3713.

    Article  CAS  Google Scholar 

  31. P. Sivasakthi and M.V. Sangaranarayanan, Influence of Pulse and Direct Current on Electrodeposition of Ni-Gd2O3 Nanocomposite for Micro Hardness, Wear Resistance and Corrosion Resistance Applications, Compos. Commun., 2019, 13, p 134–142.

    Article  Google Scholar 

  32. C.F. Sun, X.Q. Liu, C.Y. Zhou, C.N. Wang, and H.W. Cao, Preparation and Wear Properties of Magnetic Assisted Pulse Electrodeposited Ni-SiC Nanocoatings, Ceram. Int., 2018, 45(1), p 1348–1355.

    Article  Google Scholar 

Download references

Acknowledgments

The research is supported by the National Natural Science Foundation of China (Granted No. 51974089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Wang, H. & Guo, X. Effect of Electrodeposition Method on the Abrasion Resistance of Ni-SiC Composite Nanocoatings. J. of Materi Eng and Perform 33, 2853–2859 (2024). https://doi.org/10.1007/s11665-023-08204-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08204-w

Keywords

Navigation