Log in

Anti-corrosion and Microstructural Properties of Nanostructured Ni-Co Coating Prepared by Pulse-Reverse Electrochemical Deposition Method

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this research, nanostructured Ni-Co coating was synthesized by reverse-pulse electrodeposition method using Watts bath under both ultrasonic and stirring conditions. The grain refinement agent, sodium saccharin, was added to the plating bath in order to achieve very fine grains for both coatings. The microstructure, microhardness, and corrosion resistance of the prepared coatings were evaluated. The ultrasonic treatment changed the texture, deposition rate, and chemical composition of the coating. A clear increase was seen in the texture coefficient for all (200) planes. The corrosion resistance of the coatings was analyzed by polarization and electrochemical impedance spectroscopy tests in 3.5 wt.% NaCl solution at ambient temperature. Based on the results, the corrosion resistance of Ni-Co coating increased by 42%, the microhardness decreased by 16%, and the film thickness increased from 20 to 30 µm as a result of applying ultrasonic during electroplating, which can be attributed to the changes in composition and morphology of the coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. Y. Yang, Y. Wang, C. Zheng, H. Lin, R. Xu, H. Zhu, L. Bao, and X. Xu, Lanthanum Carbonate Grafted ZSM-5 for Superior Phosphate Uptake: Investigation of the Growth and Adsorption Mechanism, Chem. Eng. J., 2022, 430, 133166. https://doi.org/10.1016/J.CEJ.2021.133166

    Article  CAS  Google Scholar 

  2. H. Zhu, J. Zhu, Z. Zhang, and R. Zhao, Crossover from Linear Chains to a Honeycomb Network for the Nucleation of Hexagonal Boron Nitride Grown on the Ni(111) Surface, J. Phys. Chem. C., 2021, 125, p 26542–26551. https://doi.org/10.1021/acs.jpcc.1c09334

    Article  CAS  Google Scholar 

  3. J. **e, J. Zhang, Z. Zhang, Q. Yang, K. Guan, Y. He, R. Wang, H. Zhang, X. Qiu, and R. Wu, New Insights on the Different Corrosion Mechanisms of Mg Alloys with Solute-Enriched Stacking Faults or Long Period Stacking Ordered Phase, Corros. Sci., 2022, 198, 110163. https://doi.org/10.1016/j.corsci.2022.110163

    Article  CAS  Google Scholar 

  4. W. Yan, K. Liang, Z. Chi, T. Liu, M. Cao, S. Fan, T. Xu, T. Liu, and J. Su, Litchi-like Structured MnCo2S4@C as a High Capacity and Long-Cycling Time Anode for Lithium-Ion Batteries, Electrochim. Acta., 2021, 376, 138035. https://doi.org/10.1016/J.ELECTACTA.2021.138035

    Article  CAS  Google Scholar 

  5. C. Guo, Z. Zhang, Y. Wu, Y. Wang, G. Ma, J. Shi, Z. Zhong, Z. Hong, Z. **, and Y. Zhao, Synergic Realization of Electrical Insulation and Mechanical Strength in Liquid Nitrogen for High-Temperature Superconducting Tapes with Ultra-Thin Acrylic Resin Coating, Supercond. Sci. Technol., 2022, 35, p 75014. https://doi.org/10.1088/1361-6668/ac6e0d

    Article  Google Scholar 

  6. A. Karimzadeh, M. Aliofkhazraei, and F.C. Walsh, A Review of Electrodeposited Ni-Co Alloy and Composite Coatings: Microstructure, Properties and Applications, Surf. Coatings Technol., 2019, 372, p 463–498. https://doi.org/10.1016/j.surfcoat.2019.04.079

    Article  CAS  Google Scholar 

  7. X. Li, D. Yi, X. Wu, J. Zhang, X. Yang, Z. Zhao, Y. Feng, J. Wang, P. Bai, B. Liu, and Y. Liu, Effect of Construction Angles on Microstructure and Mechanical Properties of AlSi10Mg Alloy Fabricated by Selective Laser Melting, J. Alloys Compd., 2021, 881, 160459. https://doi.org/10.1016/j.jallcom.2021.160459

    Article  CAS  Google Scholar 

  8. X. Li, X. Yang, D. Yi, B. Liu, J. Zhu, J. Li, C. Gao, and L. Wang, Effects of NbC Content on Microstructural Evolution and Mechanical Properties of Laser Cladded Fe50Mn30Co10Cr10-xNbC Composite Coatings, Intermetallics., 2021, 138, 107309. https://doi.org/10.1016/j.intermet.2021.107309

    Article  CAS  Google Scholar 

  9. C. Gu, J. Lian, and Z. Jiang, High Strength Nanocrystalline Ni-Co Alloy with Enhanced Tensile Ductility, Adv. Eng. Mater., 2006, 8, p 252–256. https://doi.org/10.1002/adem.200500197

    Article  CAS  Google Scholar 

  10. F. Ning, G. He, C. Sheng, H. He, J. Wang, R. Zhou, and X. Ning, Yarn on Yarn Abrasion Performance of High Modulus Polyethylene Fiber Improved by Graphene/Polyurethane Composites Coating, J. Eng. Fiber. Fabr., 2021, 16, p 1558925020983563. https://doi.org/10.1177/1558925020983563

    Article  CAS  Google Scholar 

  11. L.C. Li Xuewu, W. Hongxing, S. Tian, Z. Chuanwei, J. **aona, and Z. Xuegang, Efficient Preparation and Anticorrosion Mechanism of Superhydrophobic 7075 Aviation Aluminum Alloy, Rare Met Mater. Eng., 2022, 51, p 6–10.

    Google Scholar 

  12. B. Bakhit and A. Akbari, Effect of Particle Size and Co-Deposition Technique on Hardness and Corrosion PROPERTIES of Ni-Co/SiC Composite Coatings, Surf. Coatings Technol., 2012, 206, p 4964–4975. https://doi.org/10.1016/j.surfcoat.2012.05.122

    Article  CAS  Google Scholar 

  13. M. Mandal and C. Sasikumar, Electrodeposition of Nanostructured Ni Based Alloys/Composites —A Critical Analysis, Adv. Mater. Res., 2014, 984–985, p 514–519. https://doi.org/10.4028/www.scientific.net/AMR.984-985.514

    Article  CAS  Google Scholar 

  14. F. Nematzadeh, M.R. Akbarpour, S. Parvizi, A.H. Kokabi, and S.K. Sadrnezhaad, Effect of Welding Parameters on Microstructure, Mechanical Properties and Hot Cracking Phenomenon in Udimet 520 Superalloy, Mater. Des., 2012, 36, p 94–99. https://doi.org/10.1016/j.matdes.2011.10.020

    Article  CAS  Google Scholar 

  15. C.K. Chung and W.T. Chang, Effect of Pulse Frequency and Current Density on Anomalous Composition and Nanomechanical Property of Electrodeposited Ni-Co films, Thin Solid Films, 2009, 517, p 4800–4804. https://doi.org/10.1016/j.tsf.2009.03.087

    Article  CAS  Google Scholar 

  16. Y. Li, H. Jiang, W. Huang, and H. Tian, Effects of Peak Current Density on the Mechanical Properties of Nanocrystalline Ni-Co Alloys Produced by Pulse Electrodeposition, Appl. Surf. Sci., 2008, 254, p 6865–6869. https://doi.org/10.1016/j.apsusc.2008.04.087

    Article  CAS  Google Scholar 

  17. L. Tian, J. Xu, and S. **ao, The Influence of pH and Bath Composition on the Properties of Ni-Co Coatings Synthesized by Electrodeposition, Vacuum, 2011, 86, p 27–33. https://doi.org/10.1016/j.vacuum.2011.03.027

    Article  CAS  Google Scholar 

  18. T. Borkar and S. Harimkar, Microstructure and Wear Behaviour of Pulse Electrodeposited Ni-CNT Composite Coatings, Surf. Eng., 2011, 27, p 524–530. https://doi.org/10.1179/1743294410Y.0000000001

    Article  CAS  Google Scholar 

  19. D.D. Shreeram, V. Bedekar, S. Li, H. Cong, and G.L. Doll, Corrosion- and Wear-Resistant Pulse Reverse Current (PRC)-Based Electrodeposited Ni-W Coating, Jom., 2018, 70, p 2603–2610. https://doi.org/10.1007/s11837-018-3084-9

    Article  CAS  Google Scholar 

  20. A. Balasubramanian, D.S. Srikumar, G. Raja, G. Saravanan, and S. Mohan, Effect of Pulse Parameter on Pulsed Electrodeposition of Copper on Stainless Steel, Surf. Eng., 2009, 25, p 389–392. https://doi.org/10.1179/026708408X344680

    Article  CAS  Google Scholar 

  21. T.R. Mahmood and J.K. Dennis, Effect of Ultrasonic AGITATION on Ni-Co and Ni-Fe Summary the Effects of Ultrasonic Agitation on Deposition from Two Iron Group Alloy Plating Solutions, Ni-Co and Bright Ni-Fe, have Been Studied, Com- parison has been made with deposits pl, 1984, 22, p 219–239.

    CAS  Google Scholar 

  22. M. Sheng, C. Lv, L. Hong, M. Shao, K. Wan, and F. Lv, The Influence of Ultrasonic Frequency on the Properties of Ni-Co Coatings Prepared by Ultrasound-Assisted Electrodeposition, Acta Metall Sin., 2013, 26, p 735–741. https://doi.org/10.1007/s40195-013-0162-4

    Article  CAS  Google Scholar 

  23. N. Wang, T. Hang, S. Shanmugam, and M. Li, Preparation and Characterization of Nickel-Cobalt Alloy Nanostructures Array Fabricated by Electrodeposition, CrystEngComm, 2014, 16, p 6937–6943. https://doi.org/10.1039/c4ce00565a

    Article  CAS  Google Scholar 

  24. G. Qiao, T. **g, N. Wang, Y. Gao, X. ZHAO, J. Zhou, and W. Wang, High-Speed Jet Electrodeposition and Microstructure of Nanocrystalline Ni-Co Alloys, Electrochim. Acta., 2005, 51, p 85–92. https://doi.org/10.1016/j.electacta.2005.03.050

    Article  CAS  Google Scholar 

  25. J. Ju, Z. Shen, M. Kang, J. Zhang, and J. Wang, On the Preferential Grain Boundary Oxidation of a Ni-Co-Based Superalloy, Corros. Sci., 2022, 199, 110203. https://doi.org/10.1016/j.corsci.2022.110203

    Article  CAS  Google Scholar 

  26. Y. Wu, Y. Zhao, X. Han, G. Jiang, J. Shi, P. Liu, M.Z. Khan, H. Huhtinen, J. Zhu, Z. **, and Y. Yamada, Ultra-Fast Growth of Cuprate Superconducting Films: Dual-Phase Liquid Assisted Epitaxy and Strong Flux Pinning, Mater. Today Phys., 2021, 18, 100400. https://doi.org/10.1016/j.mtphys.2021.100400

    Article  CAS  Google Scholar 

  27. B.-J. Lv, S. Wang, T.-W. Xu, and F. Guo, Effects of Minor Nd and Er Additions on the Precipitation Evolution and Dynamic Recrystallization Behavior of Mg–6.0Zn–0.5Mn Alloy, J. Magnes. Alloy., 2021, 9, p 840–852. https://doi.org/10.1016/j.jma.2020.06.018

    Article  CAS  Google Scholar 

  28. L.M. Chang, D. Chen, J.H. Liu, and R.J. Zhang, Effects of Different Plating Modes on Microstructure and Corrosion Resistance of Zn-Ni Alloy Coatings, J. Alloys Compd., 2009, 479, p 489–493. https://doi.org/10.1016/j.jallcom.2008.12.108

    Article  CAS  Google Scholar 

  29. M. Srivastava, V. Ezhil Selvi, V.K. William Grips, and K.S. Rajam, Corrosion Resistance and Microstructure of Electrodeposited Nickel-Cobalt Alloy Coatings, Surf. Coatings Technol., 2006, 201, p 3051–3060. https://doi.org/10.1016/j.surfcoat.2006.06.017

    Article  CAS  Google Scholar 

  30. C. Liu, F. Su, and J. Liang, Nanocrystalline Co-Ni Alloy Coating Produced with Supercritical Carbon Dioxide Assisted Electrodeposition with Excellent Wear and Corrosion Resistance, Surf. Coatings Technol., 2016, 292, p 37–43. https://doi.org/10.1016/j.surfcoat.2016.03.027

    Article  CAS  Google Scholar 

  31. B. Dabrowski, J. Kaminski, W. Swieszkowski, and K.J. Kurzydlowski, Porous Titanium Scaffolds for Biomedical Applications: Corrosion Resistance and Structure Investigation, Mater. Sci. Forum., 2011, 674, p 41–46. https://doi.org/10.4028/www.scientific.net/MSF.674.41

    Article  CAS  Google Scholar 

  32. J.N. Balaraju, V.E. Selvi, V.K.W. Grips, and K.S. Rajam, Electrochemical Studies on Electroless Ternary and Quaternary Ni-P Based Alloys, Electrochim. Acta., 2006, 52, p 1064–1074. https://doi.org/10.1016/j.electacta.2006.07.001

    Article  CAS  Google Scholar 

  33. H. Hua, H. Min, Z. Wei, P. Stanislav, and W. Tao, Experimental Investigation on Rehabilitation of Corroded RC Columns with BSP and HPFL under Combined Loadings, J. Struct. Eng., 2020, 146, p 4020157. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002725

    Article  Google Scholar 

  34. D. Shi, Y. Chen, Z. Li, S. Dong, L. Li, M. Hou, H. Liu, S. Zhao, X. Chen, C.-P. Wong, and N. Zhao, Anisotropic Charge Transport Enabling High-Throughput and High-Aspect-Ratio Wet Etching of Silicon Carbide, Small Methods. n/a., 2022 https://doi.org/10.1002/smtd.202200329

    Article  Google Scholar 

  35. L. Wang, Y. Lin, Z. Zeng, W. Liu, Q. Xue, L. Hu, and J. Zhang, Electrochemical Corrosion Behavior of Nanocrystalline Co Coatings Explained by Higher Grain Boundary Density, Electrochim. Acta., 2007, 52, p 4342–4350. https://doi.org/10.1016/j.electacta.2006.12.009

    Article  CAS  Google Scholar 

  36. B. Tury, M. Lakatos-Varsányi, and S. Roy, Ni-Co Alloys Plated by Pulse Currents, Surf. Coatings Technol., 2006, 200, p 6713–6717. https://doi.org/10.1016/j.surfcoat.2005.10.008

    Article  CAS  Google Scholar 

  37. A. Amadeh and R. Ebadpour, Effect of Cobalt Content on Wear and Corrosion Behaviors of Electrodeposited Ni-Co/WC Nano-Composite Coatings, J. Nanosci. Nanotechnol., 2013, 13, p 1360–1363. https://doi.org/10.1166/jnn.2013.6025

    Article  CAS  Google Scholar 

  38. B. Bakhit, A. Akbari, F. Nasirpouri, and M.G. Hosseini, Corrosion Resistance of Ni-Co Alloy and Ni-Co/SiC Nanocomposite Coatings Electrodeposited by Sediment Codeposition Technique, Appl. Surf. Sci., 2014, 307, p 351–359. https://doi.org/10.1016/j.apsusc.2014.04.037

    Article  CAS  Google Scholar 

  39. R. Ramanauskas, R. Juškenas, A. Kaliničenko, and L.F. Garfias-Mesias, Microstructure and Corrosion Resistance of Electrodeposited Zinc Alloy Coatings, J. Solid State Electrochem., 2004, 8, p 416–421. https://doi.org/10.1007/s10008-003-0444-2

    Article  CAS  Google Scholar 

  40. B. Bakhit and A. Akbari, Nanocrystalline Ni-Co Alloy Coatings: Electrodeposition Using Horizontal Electrodes and Corrosion Resistance, J. Coatings Technol. Res., 2013, 10, p 285–295. https://doi.org/10.1007/s11998-012-9437-3

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Akbarpour.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbarpour, M.R., Gharibi Asl, F. & Rashedi, H. Anti-corrosion and Microstructural Properties of Nanostructured Ni-Co Coating Prepared by Pulse-Reverse Electrochemical Deposition Method. J. of Materi Eng and Perform 33, 94–101 (2024). https://doi.org/10.1007/s11665-023-07969-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-07969-4

Keywords

Navigation