Log in

Improving Electroless Ag Plating by Depositing Graphene Oxide/Polymer Composite Film on the Ag Layer for Corrosion Protection

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, a meta-aramid (PMIA) substrate was pretreated by embedding a Ag catalyst, and an environmentally friendly ammonia-free silver plating bath was designed for electroless silver plating to fabricate a silver-plated material (PMIA-Ag). Furthermore, a graphene oxide/polyethylenimine (GO/PEI)10 film was prepared via the layer-by-layer self-assembly technique. By implementing hydrophobic modification of heptadecafluorodecyltriethoxysilane (PFDS) on the film surface, a (GO/PEI)10-PFDS composite protective film was also fabricated. The results showed that PMIA-Ag prepared via the improved electroless plating technique had good electrical properties. The sheet resistance was 20-30 mΩ/sq and the average electromagnetic shielding effectiveness was 68.23 dB in the frequency range of 30-3000 MHz. Moreover, the prepared (GO/PEI)10-PFDS composite protective film exhibited excellent anti-corrosion and anti-tarnish properties. The electrochemical data showed that the surface coverage of the protective film on the silver coating was 96.48%, while the corrosion inhibition efficiency on the silver coating reached 85.28%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. G. Radiaski, B. Lewczuk, A. Zak et al., The Influence of Electromagnetic Pollution on Living Organisms: Historical Trends and Forecasting Changes, Biomed Res. Int., 2015 https://doi.org/10.1155/2015/234098

    Article  Google Scholar 

  2. B. Tuysuz and Y. Mahutoglu, Measurement and Map** of the GSM-Based Electromagnetic Pollution in the Black Sea Region Of Turkey, Electromagn. Biol. Med., 2017, 36(2), p 132–140. https://doi.org/10.1080/15368378.2016.1198801

    Article  Google Scholar 

  3. H.R. Zhang, X.G. Zou, J.J. Liang et al., Development of Electroless Silver Plating on Para-Aramid Fibers and Growth Morphology of Silver Deposits, J. Appl. Polym. Sci., 2012, 124(4), p 3363–3371. https://doi.org/10.1002/app.35332

    Article  CAS  Google Scholar 

  4. C.C. Liu, J. Chen, X.Q. Li et al., Electroless Plate of Polyaniline-Silver Composite Layer on Polyester Fibers, J. Polym. Eng., 2019, 39(2), p 161–169. https://doi.org/10.1015/polyeng-2018-0205

    Article  CAS  Google Scholar 

  5. H. Liu, L.L. Zhu, Y. He et al., A Novel Method for Fabricating Elastic Conductive Polyurethane Filaments by In-Situ Reduction of Polydopamine and Electroless Silver Plating, Mater. Design, 2017, 113, p 254–263. https://doi.org/10.1016/j.matdes.2016.10.027

    Article  CAS  Google Scholar 

  6. D. Anil, B.E. Conn, J.S. Guo et al., Ultrastable Silver Nanoparticles, Nature, 2013, 501, p 399. https://doi.org/10.1038/nature12523

    Article  CAS  Google Scholar 

  7. H.R. Zhang and X.L. Xue, The Research Progress on Corrosion and Protection of Silver Layer, SN Appl. Sci., 2019, 1(5), p 464. https://doi.org/10.1007/s42452-019-0495-3

    Article  CAS  Google Scholar 

  8. Z. Rajabalizadeh, D. Seifzadeh, A. Khodayari et al., Corrosion Protection and Mechanical Properties of the Electroless Ni-P-MOF Nanocomposite Coating on AM60B Magnesium alloy, J. Magnes. Alloy., 2021 https://doi.org/10.1016/j.jma.2021.08.013

    Article  Google Scholar 

  9. E.M. Fayyad, A.M. Abdullah, M.K. Hassan et al., Recent Advances in Electroless-Plated Ni-P and its Composites for Erosion and Corrosion Applications: a Review, Emergent Mater., 2018, 1, p 3–24. https://doi.org/10.1007/s42247-018-0010-4

    Article  CAS  Google Scholar 

  10. V. Torabinejad, M. Aliofkhazraei, S. Assareh et al., Electrodeposition of Ni-Fe Alloys, Composites, and Nano Coatings—A Review, J. Alloys. Compd., 2017, 691, p 841–859. https://doi.org/10.1016/j.jallcom.2016.08.329

    Article  CAS  Google Scholar 

  11. A. Karimzadeh, M. Aliofkhazraei, and F.C. Walsh, A Review of Electrodeposited Ni-Co Alloy and Composite Coatings: Microstructure, Properties and Applications, Surf. Coat. Technol., 2019, 372, p 463–498. https://doi.org/10.1016/j.surfcoat.2019.04.079

    Article  CAS  Google Scholar 

  12. P.S. Sidky and M.G. Hocking, Prview of Inorganic Coatings and Coating Processes for Reducing Wear and Corrosion, Brit. Corros. J., 1999, 34(3), p 171–183. https://doi.org/10.1179/000705999101500815

    Article  CAS  Google Scholar 

  13. S.J. Kim, T. Kim, D. Kim et al., Layer-by-Layer Assembled Nano-Composite Multilayer Gas Barrier Film Manufactured with Stretchable Substrate, Appl. Sci., 2021, 11, p 5794. https://doi.org/10.3390/app11135794

    Article  CAS  Google Scholar 

  14. S.M. Lee, H. Jeong, N.H. Kim et al., Layer-by-layer Assembled Graphene Oxide/Polydialllydimethylammonium Chloride Composites for Hydrogen Gas Barrier Application, Adv. Compos. Mater., 2018, 27(5), p 457–466. https://doi.org/10.1080/09243046.2018.1510591

    Article  Google Scholar 

  15. H.D. Huang, C.Y. Liu, D. Li et al., Ultra-Low Gas Permeability and Efficient Reinforcement of Cellulose Nanocomposite Films by Well-Aligned Graphene Oxide Nanosheets, J. Mater. Chem. A, 2014, 2, p 15853. https://doi.org/10.1039/c4ta03305a

    Article  CAS  Google Scholar 

  16. P. Bandyopadhyay, W.B. Park, R.K. Layek et al., Hexylamine Functionalized Reduced Graphene Oxide/Polyurethane Nanocomposite—Coated Nylon for Enhance Hydrogen Gas Barrier Film, J. Membr. Sci., 2016, 500, p 106–114. https://doi.org/10.1016/j.memsci.2015.11.029

    Article  CAS  Google Scholar 

  17. F. Duan, W. Li, G. Wang et al., Can Insulating Graphene Oxide Contribute the Enhanced Conductivity and Durability of Silver Nanowire Coating?, Nano Res., 2019, 12(7), p 1571–1577. https://doi.org/10.1007/s12274-019-2394-8

    Article  CAS  Google Scholar 

  18. K.H. Lee, J.H. Hong, S.J. Kwak et al., Spin Self-Assembly of Highly Ordered Multilayers of Graphene-Oxide Sheets for Improving Oxygen Barrier Performance of Polyolefin Films, Carbon, 2015, 83, p 40–47. https://doi.org/10.1016/j.carbon.2014.11.025

    Article  CAS  Google Scholar 

  19. C. Wu, J. Jiu, T. Araki et al., Rapid Self-Assembly of Ultrathin Graphene Oxide Film and Application to Silver Nanowire Flexible Transparent Electrodes, RSC Adv., 2016, 6(19), p 15838–15845. https://doi.org/10.1039/c5ra24896e

    Article  CAS  Google Scholar 

  20. H. Chen, M. Li, X. Wen et al., Enhanced Silver Nanowire Composite Window Electrode Protected by Large Size Graphene Oxide Sheets for Perovskite Solar Cells, Nanomaterials, 2019, 9, p 193. https://doi.org/10.3390/nano9020193

    Article  CAS  Google Scholar 

  21. S. Xu, J. Song, C. Zhu et al., Craphene Oxide-Encapsulated Ag Nanoparticle-Coated Silk Fibers with Hierarchical Coaxial Cable Structure Fabricated by the Molecule-Directed Self-Assembly, Mater. Lett., 2017, 188, p 215–219. https://doi.org/10.1016/j.matlet.2016.11.010

    Article  CAS  Google Scholar 

  22. L. Zhao, H. Zhang, N.H. Kim et al., Preparation of Graphene Oxide/Polyethyleneimine Layer-by-Layer Assembled Film for Enhanced Hydrogen Barrier Property, Compos. Part B, 2016, 92, p 252–258. https://doi.org/10.1016/j.compositesb.2016.02.037

    Article  CAS  Google Scholar 

  23. W.B. Park, P. Bandyopadhyay, T.T. Nguyen et al., Effect of High Molecular Weight Polyethyleneimine Functionalized Graphene Oxide Coated Polyethylene Terephthalate Film on the Hydrogen Gas Barrier Properties, Compos. Part B, 2016, 106, p 316–323. https://doi.org/10.1016/j.compositesb.2016.09.048

    Article  CAS  Google Scholar 

  24. P. Li, K. Chen, L. Zhao et al., Preparation of Modified Graphene Oxide/Polyethyleneimine Film with Enhanced Hydrogen Barrier Properties by Reactive Layer-By-Layer Self-Assembly, Compos. Part B, 2019, 166, p 663–672. https://doi.org/10.1016/j.compositesb.2019.02.058

    Article  CAS  Google Scholar 

  25. J.T. Chen, Y.J. Fu, Q.F. An et al., Tuning Nanostructure of Graphene Oxide/Polyelectrolyte LBL Assemblies by Controlling pH of GO Suspension to Fabricate Transparent and Super Gas Barrier Films, Nanoscale, 2013, 5, p 9081. https://doi.org/10.1039/c3nr02845c

    Article  CAS  Google Scholar 

  26. Y.H. Yang, L. Bolling, A. Morgan et al., Super Gas Barrier and Selectivity of Graphene Oxide—Polymer PEI Multilayer Thin Films, Adv. Mater., 2013, 25, p 503–508. https://doi.org/10.1002/adma.201202951

    Article  CAS  Google Scholar 

  27. L. Zhao, H. Sun, N. Kim et al., Hydrogen Gas Barrier Property of Polyelectrolyte/GO Layer-by-Layer Films, J. Appl. Polym. Sci., 2015, 132(20), p 41973. https://doi.org/10.1002/app.41973

    Article  CAS  Google Scholar 

  28. Y. L. Feng, Electroless silver plating on polyester fabric and the protection of silver coating, Shanghai Univ. Master’s Dissertation, 2014

  29. H.W. Pang, R.C. Bai, Q.S. Shao et al., A Novel Ag Catalyzation Process Using Swelling Impregnation Method for Electroless Ni Deposition on Kevlar® Fiber, Appl. Surf. Sci., 2015, 359, p 280–287. https://doi.org/10.1016/j.apsusc.2015.10.100

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely appreciate the financial support from the National Natural Science Foundation of China (51103083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiru Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Xue, X. Improving Electroless Ag Plating by Depositing Graphene Oxide/Polymer Composite Film on the Ag Layer for Corrosion Protection. J. of Materi Eng and Perform 32, 4807–4816 (2023). https://doi.org/10.1007/s11665-022-07395-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07395-y

Keywords

Navigation