Log in

Effect of the Tool Pin Eccentricity and Cooling Rate on Microstructure, Mechanical Properties, Fretting Wear, and Corrosion Behavior of Friction Stir Processed AA6063 Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Friction stir processing (FSP) was carried out in AA6063 alloy using the tools with different pin eccentricities (0 and 0.6 mm) under different cooling rates. Results showed that the FSP using a tool with 0.6 mm pin eccentricity enhances the hardness, tensile strength, fretting wear resistance, and corrosion resistance of AA6063 alloy. Moreover, a high cooling rate using a water circulating copper block further enhances the hardness, tensile strength, fretting wear resistance, and corrosion resistance of AA6063 alloy. Pin eccentricity and increasing cooling rate reduce the peak temperature during FSP, thereby preventing grain coarsening, resulting in fine grain structure, enhancing the hardness, tensile strength, fretting wear resistance, and corrosion resistance. The XRD pattern reveals no phase changes due to FSP, but peak broadening occurred in FSP specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12
Fig. 13
Fig. 14
Fig.15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. P. Nelaturu, S. Jana, R.S. Mishra, G. Grant and B.E. Carlson, Influence of Friction Stir Processing on the Room Temperature Fatigue Cracking Mechanisms of A356 Aluminum Alloy, Mater. Sci. Eng. A, 2018, 716, p 165–178.

    Article  CAS  Google Scholar 

  2. A.K. Srivastava, A.R. Dixit and S. Tiwari, A Review on the Intensification of Metal Matrix Composites and Its Nonconventional Machining, IEEE J. Sel. Top. Quantum Electron., 2018, 25, p 213–228.

    Google Scholar 

  3. C. Srinivasan and M. Karunanithi, Fabrication of Surface Level Cu/SiCp Nanocomposites by Friction Stir Processing Route, J. Nanotechnol., 2015, 2015, p 1–10. https://doi.org/10.1155/2015/612617

    Article  CAS  Google Scholar 

  4. S. Sahraeinejad, H. Izadi, M. Haghshenas and A.P. Gerlich, Fabrication of Metal Matrix Composites by Friction Stir Processing with Different Particles and Processing Parameters, Mater. Sci. Eng. A, 2015, 626, p 505–513.

    Article  CAS  Google Scholar 

  5. N. Arun Prakash, R. Gnanamoorthy and M. Kamaraj, Fretting Wear Behavior of Fine Grain Structured Aluminium Alloy Formed by Oil Jet Peening Process under Dry Sliding Condition, Wear, 2012, 294–295, p 427–437.

    Article  CAS  Google Scholar 

  6. E. Aghaie, J. Stroh, D. Sediako, A. Rashidi and A.S. Milani, Improving the Mechanical Properties of the B319 Aluminum Alloy by Addition of Cerium, Mater. Sci. Eng. A, 2020, 793, p 1398–1399.

    Article  Google Scholar 

  7. P. Gao, J. Li, Z. Yang, Y. Guo and Y. Wang, Preparation of Al/SiC Composite Coatings on Surface of Aluminum Alloy by Atmospheric Plasma Spraying, **you **shu Cailiao Yu Gongcheng/Rare Met. Mater. Eng., 2015, 44, p 2396–2400.

    CAS  Google Scholar 

  8. I. Sabirov, M.Y. Murashkin and R.Z. Valiev, Nanostructured Aluminium Alloys Produced by Severe Plastic Deformation: New Horizons in Development, Mater. Sci. Eng. A, 2013, 560, p 1–24.

    Article  CAS  Google Scholar 

  9. Z.Y. Ma, Friction Stir Processing Technology: A Review, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2008, 39, p 642–658.

    Article  Google Scholar 

  10. H.G. Rana, V.J. Badheka and A. Kumar, Fabrication of Al7075 / B4C Surface Composite by Novel Friction Stir Processing (FSP) and Investigation on Wear Properties, Proc. Technol., 2016, 23, p 519–528.

    Article  Google Scholar 

  11. J.Q. Su, T.W. Nelson and C.J. Sterling, Friction Stir Processing of Large-Area Bulk UFG Aluminum Alloys, Scr. Mater., 2005, 52, p 135–140.

    Article  CAS  Google Scholar 

  12. M.W. Mahoney, A.J. Barnes, W.H. Bingel and C.B. Fuller, Superplastic Forming of 7475 Al Sheet After Friction Stir Processing (FSP), Mater. Sci. Forum, 2004, 447–448, p 505–512. https://doi.org/10.4028/www.scientific.net/MSF.447-448.505

    Article  CAS  Google Scholar 

  13. Thomas. United States Patent 1992, 19.

  14. W. Zhang, L. Tan, D. Ni, J. Chen, Y.C. Zhao, L. Liu et al., Effect of Grain Refinement and Crystallographic Texture Produced by friction Stir Processing on the Biodegradation Behavior of a Mg-Nd-Zn Alloy, J. Mater. Sci. Technol., 2019, 35, p 777–783.

    Article  CAS  Google Scholar 

  15. H.K. Rafi, G.D.J. Ram, G. Phanikumar and K.P. Rao, Microstructural Evolution During Friction Surfacing of Tool Steel H13, Mater. Des., 2011, 32, p 82–87.

    Article  CAS  Google Scholar 

  16. N. Saito, I. Shigematsu, T. Komaya, T. Tamaki, G. Yamauchi and M. Nakamura, Grain Refinement of 1050 Aluminum Alloy by Friction Stir Processing, J. Mater. Sci. Lett., 2001, 20, p 1913–1915.

    Article  CAS  Google Scholar 

  17. R.S. Mishra and M.W. Mahoney, Friction Stir Processing: A New Grain Refinement Technique to Achieve High Strain Rate Superplasticity in Commercial Alloys, Mater. Sci. Forum, 2001, 357–359, p 507–514. https://doi.org/10.4028/www.scientific.net/MSF.357-359.507

    Article  CAS  Google Scholar 

  18. G.K. Padhy, C.S. Wu and S. Gao, Friction Stir Based Welding and Processing Technologies Processes, Parameters, Microstructures and Applications: A Review, J. Mater. Sci. Technol., 2018, 34, p 1–38.

    Article  Google Scholar 

  19. V.V. Patel, V. Badheka and A. Kumar, Influence of Friction Stir Processed Parameters on Superplasticity of Al-Zn-Mg-Cu Alloy, Mater. Manuf. Process, 2016, 31, p 1573–1582.

    Article  CAS  Google Scholar 

  20. E.A. El-Danaf, M.M. El-Rayes and M.S. Soliman, Friction Stir Processing: An Effective Technique to Refine Grain Structure and Enhance Ductility, Mater. Des., 2010, 31, p 1231–1236.

    Article  CAS  Google Scholar 

  21. E.R.I. Mahmoud, K. Ikeuchi and M. Takahashi, Fabrication of SiC Particle Reinforced Composite on Aluminium Surface by Friction Stir Processing, Sci. Technol. Weld. Join., 2008, 13, p 607–618.

    Article  CAS  Google Scholar 

  22. E.R.I. Mahmoud, M. Takahashi, T. Shibayanagi and K. Ikeuchi, Effect of Friction Stir Processing Tool Probe on Fabrication of SiC Particle Reinforced Composite on Aluminium Surface, Sci. Technol. Weld. Join., 2009, 14, p 413–425.

    Article  CAS  Google Scholar 

  23. H. Zhao, Q. Pan, Q. Qin, Y. Wu and X. Su, Effect of the Processing Parameters of Friction Stir Processing on the Microstructure and Mechanical Properties of 6063 Aluminum Alloy, Mater. Sci. Eng. A, 2019, 751, p 70–79.

    Article  CAS  Google Scholar 

  24. A. Dolatkhah, P. Golbabaei, M.K. Besharati Givi and F. Molaiekiya, Investigating Effects of Process Parameters on Microstructural and Mechanical Properties of Al5052/SiC Metal Matrix Composite Fabricated Via Friction Stir Processing, Mater. Des., 2012, 37, p 458–464.

    Article  CAS  Google Scholar 

  25. M.S. Węglowski, M. Kopyściański and S. Dymek, Friction stir Processing Multi-Run Modification of Cast Aluminum Alloy, Key Eng. Mater., 2014, 611–612, p 1595–1600. https://doi.org/10.4028/www.scientific.net/KEM.611-612.1595

    Article  CAS  Google Scholar 

  26. Y. Mao, L. Ke, F. Liu, Q. Liu, C. Huang and L. **ng, Effect of tool Pin Eccentricity on Microstructure and Mechanical Properties in friction Stir Welded 7075 Aluminum Alloy Thick Plate, Mater. Des., 2014, 62, p 334–343.

    Article  CAS  Google Scholar 

  27. Y. Chen, H. Wang, X. Wang, H. Ding, J. Zhao, F. Zhang et al., Influence of Tool Pin Eccentricity on Microstructural Evolution and Mechanical Properties of Friction Stir Processed Al-5052 Alloy, Mater. Sci. Eng. A, 2019, 739, p 272–276.

    Article  CAS  Google Scholar 

  28. A.R.S. Essa, M.M.Z. Ahmed, A.K.Y.A. Mohamed and A.E. El-Nikhaily, An Analytical Model of Heat Generation for Eccentric Cylindrical Pin in Friction Stir Welding, J. Mater. Res. Technol., 2016, 5, p 234–240.

    Article  CAS  Google Scholar 

  29. V. Patel, V. Badheka, W. Li and S. Akkireddy, Hybrid friction Stir Processing with Active Cooling Approach to Enhance Superplastic Behavior of AA7075 Aluminum Alloy, Arch. Civ. Mech. Eng., 2019, 19, p 1368–1380.

    Article  Google Scholar 

  30. L. Fratini, G. Buffa and R. Shivpuri, Mechanical and Metallurgical Effects of in Process Cooling During Friction Stir Welding of AA7075-T6 Butt Joints, Acta Mater., 2010, 58, p 2056–2067.

    Article  CAS  Google Scholar 

  31. H. Lin, Y. Wu, S. Liu and X. Zhou, Effect of Cooling Conditions on Microstructure and Mechanical Properties of Friction Stir Welded 7055 Aluminium Alloy Joints, Mater. Charact., 2018, 141, p 74–85.

    Article  CAS  Google Scholar 

  32. L. Kruszka, J. Anaszewicz and M. Grazia, Experimental and Numerical Analysis of Al6063 Duralumin Using Taylor Impact Test, EPJ Web Conf., 2012, 26, p 1–4.

    Article  Google Scholar 

  33. K.N. Salloomi, Fully Coupled Thermomechanical Simulation of Friction Stir Welding of Aluminum 6061–T6 Alloy T-joint, J. Manuf. Process., 2019, 45, p 746–754.

    Article  Google Scholar 

  34. S.S.M. Mehrian, M. Rahsepar, F. Khodabakhshi and A.P. Gerlich, Effects of Friction Stir Processing on the Microstructure, Mechanical and Corrosion Behaviors of an Aluminum-Magnesium Alloy, Surf. Coat. Technol., 2021, 405, p 126647.

    Article  CAS  Google Scholar 

  35. L. Karthikeyan, V.S. Senthilkumar, V. Balasubramanian and S. Natarajan, Mechanical Property and Microstructural Changes During Friction Stir Processing of Cast Aluminum 2285 Alloy, Mater. Des., 2009, 30, p 2237–2242.

    Article  CAS  Google Scholar 

  36. S. Swaminathan, K. Oh-Ishi, A.P. Zhilyaev, C.B. Fuller, B. London, M.W. Mahoney, Peak Stir Zone Temperatures During Friction Stir Processing.

  37. F. Ozturk, A. Sisman, S. Toros, S. Kilic and R.C. Picu, Influence of aging treatment on Mechanical Properties of 6061 Aluminum Alloy, Mater. Des., 2010, 31, p 972–975.

    Article  CAS  Google Scholar 

  38. C. Hamilton and M. Stanisław, A simulation of Friction-Stir Processing for Temperature and Material Flow, Metall. Mater. Trans. B, 2015, 46, p 1409–1418.

    Article  CAS  Google Scholar 

  39. C. Hamilton, M.S. Węglowski, S. Dymek and P. Sedek, Using a Coupled Thermal/Material Flow Model to Predict Residual Stress in Friction Stir Processed AlMg9Si, J. Mater. Eng. Perform, 2015, 24, p 1305–1312.

    Article  CAS  Google Scholar 

  40. M.S. Węglowski, S. Dymek and C.B. Hamilton, Experimental Investigation and Modelling of Friction Stir Processing of Cast Aluminium Alloy AlSi9Mg, Bull. Pol. Acad. Sci. Tech. Sci., 2013, 61, p 894–903.

    Google Scholar 

  41. P. Asadi, R.A. Mahdavinejad and S. Tutunchilar, Simulation and Experimental Investigation of FSP of AZ91 Magnesium Alloy, Mater. Sci. Eng. A, 2011, 528, p 6469–6477.

    Article  CAS  Google Scholar 

  42. J.I. Langford and A.J.C. Wilson, Scherrer After Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size, J. Appl. Crystallogr., 1978, 11, p 102–113.

    Article  CAS  Google Scholar 

  43. S. Bagherifard, N. Beretta, S. Monti, M. Riccio, M. Bandini and M. Guagliano, On the Fatigue Strength Enhancement of Additive Manufactured AlSi10Mg Parts by Mechanical and Thermal Post-Processing, Mater. Des., 2018, 145, p 28–41.

    Article  CAS  Google Scholar 

  44. C.I. Chang, C.J. Lee and J.C. Huang, Relationship Between Grain Size and Zener-Holloman Parameter During Friction Stir Processing in AZ31 Mg Alloys, Scr. Mater., 2004, 51, p 509–514.

    Article  CAS  Google Scholar 

  45. T. Morishige, T. Hirata, M. Tsujikawa and K. Higashi, Comprehensive Analysis of Minimum Grain size in Pure Aluminum Using Friction Stir Processing, Mater. Lett., 2010, 64, p 1905–1908.

    Article  CAS  Google Scholar 

  46. R. Senthilkumar, M. Prakash, N. Arun and A.A. Jeyakumar, The Effect of the Number of Passes in Friction Stir Processing of Aluminum Alloy (AA6082) and its Failure Analysis, Appl. Surf. Sci., 2019, 491, p 420–431.

    Article  CAS  Google Scholar 

  47. X. Feng, H. Liu and J.C. Lippold, Microstructure Characterization of the stir zone of Submerged Friction Stir Processed Aluminum Alloy 2219, Mater. Charact., 2013, 82, p 97–102.

    Article  CAS  Google Scholar 

  48. A. Rahbar-kelishami, A. Abdollah-zadeh, M.M. Hadavi, A. Banerji, A. Alpas and A.P. Gerlich, Effects of Friction Stir Processing on Wear Properties of WC-12%Co Sprayed on 52100 Steel, Mater. Des., 2015, 86, p 98–104.

    Article  CAS  Google Scholar 

  49. H. Izadi, A. Nolting, C. Munro, D.P. Bishop, K.P. Plucknett and A.P. Gerlich, Friction Stir Processing of Al/SiC Composites Fabricated by Powder Metallurgy, J. Mater. Process. Tech., 2013, 213, p 1900–1907.

    Article  CAS  Google Scholar 

  50. H.S. Arora, H. Singh and B.K. Dhindaw, Wear Behaviour of a Mg Alloy Subjected to Friction Stir Processing, Wear, 2013, 303, p 65–77.

    Article  CAS  Google Scholar 

  51. J. Qian, J. Li, J. **ong, F. Zhang and X. Lin, In Situ Synthesizing Al 3Ni for Fabrication of Intermetallic-Reinforced Aluminum Alloy Composites by Friction Stir Processing, Mater. Sci. Eng. A, 2012, 550, p 279–285.

    Article  CAS  Google Scholar 

  52. Y. Kwon, I. Shigematsu and N. Saito, Mechanical Properties of Fine-Grained Aluminum Alloy Produced by Friction Stir Process, Scr. Mater., 2003, 49, p 785–789.

    Article  CAS  Google Scholar 

  53. F. Khodabakhshi, A. Simchi, A.H. Kokabi and A.P. Gerlich, Similar and Dissimilar Friction-Stir Welding of an PM aluminum-Matrix Hybrid Nanocomposite and Commercial Pure Aluminum: Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2016, 666, p 225–237.

    Article  CAS  Google Scholar 

  54. F. Khodabakhshi, H. Ghasemi Yazdabadi, A.H. Kokabi and A. Simchi, Friction Stir Welding of a P/M Al-Al2O3 Nanocomposite: Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2013, 585, p 222–232.

    Article  CAS  Google Scholar 

  55. C. Rajendran, K. Srinivasan, V. Balasubramanian, H. Balaji and P. Selvaraj, Mechanical Properties and Microstructural Characteristics of Friction Stir Welded AA2014-T6 Aluminium Alloy Joints, J. Mech.. Behav. Mater., 2020, 28, p 169–185.

    Article  Google Scholar 

  56. S.A. Alidokht, A. Abdollah-Zadeh, S. Soleymani, T. Saeid and H. Assadi, Evaluation of micRostructure and WEAR BEHAVIOR of Friction Stir Processed Cast Aluminum Alloy, Mater. Charact., 2012, 63, p 90–97.

    Article  CAS  Google Scholar 

  57. M. Varenberg, G. Halperin and I. Etsion, Different Aspects of the rOle of Wear Debris in Fretting Wear, Wear, 2002, 252, p 902–910.

    Article  CAS  Google Scholar 

  58. K. Surekha, B.S. Murty and K.P. Rao, Microstructural Characterization and Corrosion Behavior of Multipass Friction Stir Processed AA2219 Aluminium Alloy, Surf. Coat. Technol., 2008, 202, p 4057–4068.

    Article  CAS  Google Scholar 

  59. M.V.N.V. Satyanarayana, K. Adepu and K. Chauhan, Effect of Overlap** Friction Stir Processing on Microstructure, Mechanical Properties and Corrosion Behavior of AA6061 Alloy, Metals Mater. Int., 2020, 27(9), p 3563–3573. https://doi.org/10.1007/s12540-020-00757-y

    Article  CAS  Google Scholar 

  60. S. Kumar, Ultrasonic Assisted Friction Stir Processing of 6063 Aluminum Alloy, Arch. Civ. Mech. Eng., 2016, 16, p 473–484.

    Article  Google Scholar 

  61. M. Patel and J. Murugesan, Fretting Wear and Corrosion Behaviour of an Al–ZrO2/Ni Hybrid Composite Developed by Friction Stir Processing, Trans. Indian Inst. Met., 2022, 75, p 1–10.

    Article  Google Scholar 

  62. M. Bagheri Hariri, S. Gholami Shiri, Y. Yaghoubinezhad and R.M. Mohammadi, The Optimum Combination of Tool Rotation Rate and Traveling Speed for Obtaining the Preferable Corrosion Behavior and Mechanical Properties of Friction Stir Welded AA5052 Aluminum Alloy, Mater. Des., 2013, 50, p 620–634.

    Article  CAS  Google Scholar 

  63. M. Barati, M. Abbasi and M. Abedini, The Effects of Friction Stir Processing and Friction Stir Vibration Processing on Mechanical, Wear and Corrosion Characteristics of Al6061/SiO2 Surface Composite, J. Manuf. Process, 2019, 45, p 491–497.

    Article  Google Scholar 

  64. K.D. Ralston, D. Fabijanic and N. Birbilis, Effect of Grain Size on Corrosion of High Purity Aluminium, Electrochim. Acta, 2011, 56, p 1729–1736.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge SERB (Government of India) for financial assistance through project FILENO.SRG/2019/002353.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayaprakash Murugesan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, M., Murugesan, J. Effect of the Tool Pin Eccentricity and Cooling Rate on Microstructure, Mechanical Properties, Fretting Wear, and Corrosion Behavior of Friction Stir Processed AA6063 Alloy. J. of Materi Eng and Perform 31, 8554–8566 (2022). https://doi.org/10.1007/s11665-022-06860-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06860-y

Keywords

Navigation