Log in

Mechanical Properties of Novel Hot-Rolled 9Mn Steel: The Significant Role of Austenite Morphology and Grain Size

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A deep cryogenic treatment process before intercritical annealing (IA) to tailor the mechanical stability of the austenite grains was employed in a novel medium-Mn steel. During IA, lath-like and equiaxed morphologies austenite with different grain sizes is formed at the interface of lath-like martensite. Lath-like austenite grains with smaller grain size and adequate strain energy are much more stable than large equiaxed grains, and the difference in stability allows the continuous transformation of austenite into martensite. Austenite grains with different stabilities enable continuous strain hardening, thereby leading to excellent mechanical properties with yield strength of 745 MPa, ultimate tensile strength of 1070 MPa, total elongation of 49.7%, which provides new application prospects to automotive hot-rolled steel sheets with good formability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. O. Bouaziz, H. Zorub, and M. Huang, Driving Force and Logic of Development of Advanced High Strength Steels for Automotive Applications, Steel Res. Int., 2013, 84, p 937–947.

    CAS  Google Scholar 

  2. X.L. Zhang, J.H. Yan, T. Liu, H.J. Liu, Y.D. Shi, Q. Zhou, L.J. Zhou, and Z. Lv, Microstructural Evolution and Mechanical Behavior of a Novel Heterogeneous Medium Mn Cold-Rolled Steel, Mater. Sci. Eng. A, 2021, 800, p 140344.

    Article  CAS  Google Scholar 

  3. D. Liu, H. Ding, D. Han, M. Cai, and Y.K. Lee, Microstructural Evolution and Tensile Properties of Fe-11Mn-10Al-1.2C Medium-Mn Lightweight Steel, Mater. Sci. Eng. A, 2020, 797, p 140256.

    Article  CAS  Google Scholar 

  4. A. Mayyas, A. Qattawi, M. Omar, and D. Shan, Design for Sustainability in Automotive Industry: A Comprehensive Review, Renew. Sustain. Energy Rev., 2012, 16, p 1845–1862.

    Article  Google Scholar 

  5. G. Niu and, H. Wu, Microstructural Evolution and Mechanical Behavior of Phase Reversion-Induced Bimodal Austenitic Steels, Mater. Sci. Eng. A, 2020, 772, p 138669.

    Article  CAS  Google Scholar 

  6. S.S. Sohn, H. Song, M.C. Jo, T. Song, H.S. Kim, and S. Lee, Novel 1.5 GPa-Strength with 50%-Ductility by Transformation-Induced Plasticity of Non-Recrystallized Austenite in Duplex Steels, Sci. Rep., 2017, 7, p 1255.

    Article  Google Scholar 

  7. L. Fu, Z. Li, H. Wang, W. Wang, and A. Shan, Lüders-Like Deformation Induced by Delta-Ferrite-Assisted Martensitic Transformation in a Dual-Phase High-Manganese Steel, Scr. Mater., 2012, 67(3), p 297–300.

    Article  CAS  Google Scholar 

  8. D.W. Suh, S.J. Park, T.H. Lee, C.S. Oh, and S.J. Kim, Influence of Al on the Microstructural Evolution and Mechanical Behavior of Low-Carbon, Manganese Transformation-Induced-Plasticity Steel, Metall. Mater. Trans. A, 2010, 41, p 397–408.

    Article  Google Scholar 

  9. Z. Wang and, M.X. Huang, Optimising the Strength-Ductility-Toughness Combination in Ultra-High Strength Quenching and Partitioning Steels by Tailoring Martensite Matrix and Retained Austenite, Int. J. Plast., 2020, 134, p 102851.

    Article  CAS  Google Scholar 

  10. J. Li, R. Song, X. Li, N. Zhou, and R. Song, Microstructural Evolution and Tensile Properties of 70 GPa % Grade Strong and Ductile Hot-Rolled 6Mn Steel Treated by Intercritical Annealing, Mater. Sci. Eng. A, 2019, 745, p 212–220.

    Article  CAS  Google Scholar 

  11. J. Han, S.J. Lee, J.G. Jung, J.G. Jung, and Y.K. Lee, The Effects of the Initial Martensite Microstructure on the Microstructure and Tensile Properties of Intercritically Annealed Fe-9Mn-0.05C Steel, Acta. Mater., 2014, 78, p 369–377.

    Article  CAS  Google Scholar 

  12. B.B. He, M. Wang, L. Liu, and M.X. Huang, High-Strength Medium Mn Quenching and Partitioning Steel with Low Yield Ratio, Mater. Sci. Technol., 2019, 35(17), p 2109–2114.

    Article  CAS  Google Scholar 

  13. Y.B. Xu, Y. Zou, Z.P. Hu, D.T. Han, S.Q. Chen, and R.D.K. Misra, Correlation Between Deformation Behavior and Austenite Characteristics in a Mn-Al Type TRIP Steel, Mater. Sci. Eng. A, 2017, 698, p 126–135.

    Article  CAS  Google Scholar 

  14. H. Lee, M.C. Jo, S.S. Sohn, A. Zargaran, J.H. Ryu, N.J. Kim, and S. Lee, Novel Medium-Mn (Austenite + Martensite) Duplex Hot-Rolled Steel Achieving 1.6 GPa Strength with 20 % Ductility by Mn-Segregation-Induced TRIP Mechanism, Acta. Mater., 2018, 147, p 247–260.

    Article  CAS  Google Scholar 

  15. F. Zhang, A. Ruimi, P.C. Wo, and D.P. Field, Morphology and Distribution of Martensite in Dual Phase (DP980) Steel and its Relation to the Multiscale Mechanical Behavior, Mater. Sci. Eng. A, 2016, 659, p 93–103.

    Article  CAS  Google Scholar 

  16. C.Y. Lee, J. Jeong, J. Han, S.J. Lee, S. Lee, and Y.K. Lee, Coupled Strengthening in a Medium Manganese Lightweight Steel with an Inhomogeneously Grained Structure of Austenite, Acta. Mater., 2015, 84, p 1–8.

    Article  CAS  Google Scholar 

  17. B.B. He, H.W. Luo, and M.X. Huang, Experimental Investigation on a Novel Medium Mn Steel Combining Transformation-Induced Plasticity and Twinning-Induced Plasticity Effects, Int. J. Plast., 2016, 78, p 173–186.

    Article  CAS  Google Scholar 

  18. B.B. He, B. Hu, H.W. Yen, G.J. Cheng, Z.K. Wang, H.W. Luo, and M.X. Huang, High Dislocation Density-Induced Large Ductility in Deformed and Partitioned Steels, Science, 2017, 357(6355), p 1029–1032.

    Article  CAS  Google Scholar 

  19. K.I. Sugimoto, N. Usui, M. Kobayashi, and S.I. Hashimoto, Effects of Volume Fraction and Stability of Retained Austenite on Ductility of TRIP-Aided Dual-Phase Steels, ISIJ Int., 1992, 32, p 1311–1318.

    Article  CAS  Google Scholar 

  20. D.H. Kim, J.H. Kang, J.H. Ryu, and S.J. Kim, Effect of Austenitization of Cold-Rolled 10 wt.% Mn Steel on Microstructure and Discontinuous Yielding, Mater. Sci. Eng. A, 2020, 774, p 138930.

    Article  CAS  Google Scholar 

  21. J. Hu, J.M. Zhang, G.S. Sun, L.X. Du, Y. Liu, Y. Dong, and R.D.K. Misra, High Strength and Ductility Combination in Nano-/Ultrafine-Grained Medium-Mn Steel by Tuning the Stability of Reverted Austenite Involving Intercritical Annealing, J. Mater. Sci., 2019, 54, p 6565–6578.

    Article  CAS  Google Scholar 

  22. J. Hu, L.X. Du, Y. Dong, Q.W. Meng, and R.D.K. Misra, Effect of Ti Variation on Microstructure Evolution and Mechanical Properties of Low Carbon Medium Mn Heavy Plate Steel, Mater. Charact., 2019, 152, p 21–35.

    Article  CAS  Google Scholar 

  23. J. Hu, L.X. Du, W. Xu, J.H. Zhai, Y. Dong, Y.J. Liu, and R.D.K. Misra, Ensuring Combination of Strength, Ductility and Toughness in Medium-Manganese Steel Through Optimization of Nano-Scale Metastable Austenite, Mater. Charact., 2018, 136, p 20–28.

    Article  CAS  Google Scholar 

  24. C.H. Seo, K.H. Kwon, K. Choi, K.H. Kim, J.H. Kwak, S. Lee, and N.J. Kim, Deformation Behavior of Ferrite-Austenite Duplex Lightweight Fe-Mn-Al-C steel, Scr. Mater., 2012, 66(8), p 519–522.

    Article  CAS  Google Scholar 

  25. K.I. Sugimoto, M. Kobayashi, and S.I. Hashimoto, Ductility and Strain-Induced Transformation in a High-Strength Transformation-Induced Plasticity-Aided Dual-Phase Steel, Metall. Mater. Trans. A, 1992, 23, p 3085–3095.

    Article  Google Scholar 

  26. H.S. Wang, G. Yuan, M.F. Lan, J. Kang, Y.X. Zhang, G.M. Cao, R.D.K. Misra, and G.D. Wang, Microstructure and Mechanical Properties of a Novel Hot-Rolled 4% Mn Steel Processed by Intercritical Annealing, J. Mater. Sci., 2018, 53, p 12570–12582.

    Article  CAS  Google Scholar 

  27. B. Hu, B.B. He, G.J. Cheng, H.W. Yen, M.X. Huang, and H.W. Luo, Super-High-Strength and Formable Medium Mn Steel Manufactured by Warm Rolling Process, Acta. Mater., 2019, 174, p 131–141.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge the Project of International Cooperation in Shanxi (approval number: 201603D421026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ao, W., Niu, W., Wang, T. et al. Mechanical Properties of Novel Hot-Rolled 9Mn Steel: The Significant Role of Austenite Morphology and Grain Size. J. of Materi Eng and Perform 31, 6664–6671 (2022). https://doi.org/10.1007/s11665-022-06741-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06741-4

Keywords

Navigation