Log in

Microstructure and Mechanical Properties of a High-Ductility Al-Zn-Mg-Cu Aluminum Alloy Fabricated by Wire and Arc Additive Manufacturing

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Wire and arc additive manufacturing (WAAM) is a feasible technology for manufacturing large-scale metal structures. Nevertheless, this technology is seldom used to fabricate high-performance Al-Zn-Mg-Cu aluminum alloy at present due to its poor machinability and hot cracking sensitivity. 7075 aluminum wires were used herein as a raw material to produce the thin-wall block structure by (cold metal transfer) CMT-WAAM. The microstructure and properties of deposited samples with different orientations were studied compared with traditional cast 7075 aluminum alloy. Results indicate that the microstructure of the deposited samples in the horizontal direction is mainly composed of a small amount of fine columnar crystal structure and equiaxed crystal composition. Most of the grains in the deposition direction layer are coarse equiaxed and a few slender columnar grains. In the process of preparation, the precipitation of the second phase was observed, which was mainly composed of Mg2Si and (Mg (Zn, Cu, Al)2) phases. The microhardness and wear resistance of the deposited samples is lower than those of cast 7075 aluminum alloy, while the corrosion resistance is better. The anisotropic microstructure triggers subtle differences in properties with different directions, the tensile strength in the horizontal direction is better than that in the deposition direction, and the elongation in each direction is higher than 30%. The process of dynamic reversion and static recrystallization lead to low dislocation density and increased elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. A. Azarniya, A.K. Taheri and K.K. Taheri, Recent Advances in Ageing of 7xxx Series Aluminum Alloys: A Physical Metallurgy Perspective, J. Alloys Compd., 2019, 781, p 945–983.

    Article  CAS  Google Scholar 

  2. S.K. Panigrahi and R. Jayaganthan, Development of Ultrafine Grained High Strength Age Hardenable Al 7075 Alloy by Cryorolling, Mater. Des., 2011, 32, p 3150–3160.

    Article  CAS  Google Scholar 

  3. B. Çevik, Gas Tungsten Arc Welding of 7075 Aluminum Alloy: Microstructure Properties, Impact Strength, and Weld Defects, Mater. Res. Express., 2018, 5(6), p 066540.

    Article  Google Scholar 

  4. W. Guo, J.Y. Guo, J.D. Wang, M. Yang, H. Li, X.Y. Wen and J.W. Zhang, Evolution of Precipitate Microstructure During Stress Aging of an Al-Zn-Mg-Cu Alloy, Mat. Sci Eng. A-Struct., 2015, 634, p 167–175.

    Article  CAS  Google Scholar 

  5. Y. Liu, S. Liang and D.M. Jiang, Influence of Repetitious Non-Isothermal Aging on Microstructure and Strength of Al-Zn-Mg-Cu Alloy, J. Alloys Compd., 2016, 689, p 632–640.

    Article  CAS  Google Scholar 

  6. Z.W. Qi, B.J. Qi, B.Q. Cong and R.Z. Zhang, Microstructure and Mechanical Properties of Wire + Arc Additively Manufactured Al-Mg-Si Aluminum Alloy, Mater. Lett., 2018, 233, p 348–350.

    Article  CAS  Google Scholar 

  7. H.B. Geng, J.L. Li, J.T. **ong, X. Lin, D. Huang and F.S. Zhang, Formation and Improvement of Surface Waviness for Additive Manufacturing 5A06 Aluminium Alloy Component with GTAW System, Rapid Prototyp., 2018, 24, p 342–350.

    Article  Google Scholar 

  8. K.S. Derekar, A Review of Wire Arc Additive Manufacturing and Advances in Wire Arc Additive Manufacturing of Aluminium, Mater. Sci. Tech-Lond., 2018, 34, p 895–916.

    Article  CAS  Google Scholar 

  9. Q.K. Shen, X.D. Kong and X.Z. Chen, Fabrication of Bulk Al-Co-Cr-Fe-Ni High-Entropy Alloy Using Combined Cable Wire Arc Additive Manufacturing (CCW-AAM): Microstructure and Mechanical Properties, J. Mater. Sci. Technol., 2021, 74, p 136–142.

    Article  CAS  Google Scholar 

  10. Y. Wang, S.L. Yang, C.J. **e, H.B. Liu and Q. Zhang, Microstructure and Ratcheting Behavior of Additive Manufactured 4043 Aluminum Alloy, J. Mater. Eng. Perform., 2018, 27, p 4582–4592.

    Article  CAS  Google Scholar 

  11. J. Fite, S.E. Prameela, J.A. Slotwinski and T.P. Weihs, Evolution of the Microstructure and Mechanical Properties of Additively Manufactured AlSi10Mg During Room Temperature Holds and Low Temperature Aging, Addit. Manuf., 2020, 36, p 101429.

    CAS  Google Scholar 

  12. G.C. Liu, J. **ong and L. Tang, Microstructure and Mechanical Properties of 2219 Aluminum Alloy Fabricated by Double-Electrode Gas Metal Arc Additive Manufacturing, Addit. Manuf., 2020, 35, p 101375.

    CAS  Google Scholar 

  13. Z.W. Qi, B.J. Qi, B.Q. Cong, H.Y. Sun, G. Zhao and J.L. Ding, Microstructure and Mechanical Properties of Wire + Arc Additively Manufactured 2024 Aluminum Alloy Components: As-Deposited and Post Heat-Treated, J. Manuf. Process., 2019, 40, p 27–36.

    Article  Google Scholar 

  14. K.S. Derekar, A. Addison, S.S. Joshi, X. Zhang, J. Lawrence, L. Xu, G. Melton and D. Griffiths, Effect of Pulsed Metal Inert Gas (Pulsed-MIG) and Cold Metal Transfer (CMT) Techniques on Hydrogen Dissolution in Wire Arc Additive Manufacturing (WAAM) of Aluminium, Int. J. Adv. Manuf. Tech., 2020, 107(1), p 311–331.

    Article  Google Scholar 

  15. B.Q. Cong, Z.W. Qi, B.J. Qi, H.Y. Sun, G. Zhao and J.L. Ding, A Comparative Study of Additively Manufactured Thin Wall and Block Structure with Al-6.3%Cu Alloy Using Cold Metal Transfer Process, Appl. Sci. Basel, 2017, 7(3), p 275.

    Article  Google Scholar 

  16. P.D. Wang, H.S. Lei, X.L. Zhu, H.S. Chen and D.N. Fang, Influence of Manufacturing Geometric Defects on the Mechanical Properties of AlSi10Mg Alloy Fabricated by Selective Laser Melting, J. Alloys Compd., 2019, 789, p 852–859.

    Article  CAS  Google Scholar 

  17. C.M.A. Silva, I.M.F. Bragança, A. Cabrita, L. Quintino and P.A.F. Martins, Formability of a Wire Arc Deposited Aluminium Alloy, J. Braz. Soc. Mech. Sci., 2017, 39, p 4059–4068.

    Article  CAS  Google Scholar 

  18. J.L. Gu, J.L. Ding, S.W. Williams, H.M. Gu, J. Bai, Y.C. Zhai and P.H. Ma, The Strengthening Effect of Inter-Layer Cold Working and Post-Deposition Heat Treatment on the Additively Manufactured Al-6.3Cu Alloy, Mat. Sci. Eng. A-Struct., 2016, 651, p 18–26.

    Article  CAS  Google Scholar 

  19. C. Zhang, M. Gao and X.Y. Zeng, Workpiece Vibration Augmented Wire Arc Additive Manufacturing of High Strength Aluminum Alloy, J. Mater. Process. Technol., 2019, 271, p 85–92.

    Article  CAS  Google Scholar 

  20. J.L. Gu, M.J. Gao, S.L. Yang, J. Bai, Y.C. Zhai and J.L. Ding, Microstructure, Defects, and Mechanical Properties of Wire + Arc Additively Manufactured Al Cu4.3-Mg1.5 Alloy, Mater. Des., 2020, 186, p 108357.

    Article  CAS  Google Scholar 

  21. Y.F. Geng, I. Panchenko, X.Z. Chen, Y. Ivanov and S. Konovalov, Investigation of Microstructure and Fracture Mechanism of Al-5.0Mg Alloys Fabricated by Wire Arc Additive Manufacturing, J. Mater. Eng. Perform., 2021, 30(10), p 7406–7416.

    Article  CAS  Google Scholar 

  22. M. Köhler, L. Sun, J. Hensel, S. Pallaspuro, J. Komi, K. Dilger and Z.L. Zhang, Comparative Study of Deposition Patterns for DED-Arc Additive Manufacturing of Al-4046, Mater. Des., 2021, 210, p 110122.

    Article  Google Scholar 

  23. J.K. Wang, Q.K. Shen, X.D. Kong and X.Z. Chen, Arc Additively Manufactured 5356 Aluminum Alloy with Cable-Type Welding Wire: Microstructure and Mechanical Properties, J. Mater. Eng. Perform., 2021, 30(10), p 7472–7478.

    Article  CAS  Google Scholar 

  24. L.P. Ding, L. Zhao, Y.Y. Weng, D. Schryvers, Q. Liu and H. Idrissi, Atomic-Scale Investigation of the Heterogeneous Precipitation in the E (Al18Mg3Cr2) Dispersoid of 7075 Aluminum Alloy, J. Alloys Compd., 2021, 851, p 156890.

    Article  CAS  Google Scholar 

  25. M. Dixit, R.S. Mishra and K.K. Sankaran, Structure-Property Correlations in Al 7050 and Al 7055 High-Strength Aluminum Alloys, Mat. Sci. Eng. A-Struct., 2008, 478, p 163–172.

    Article  Google Scholar 

  26. B.L. Dong, X.Y. Cai, S.B. Lin, X.L. Li, C.L. Fan, C.L. Yang and H.R. Sun, Wire Arc Additive Manufacturing of Al-Zn-Mg-Cu Alloy: Microstructures and Mechanical Properties, Addit. Manuf., 2020, 36, p 101447.

    CAS  Google Scholar 

  27. D. Oropeza, D.C. Hofmann, K. Williams, S. Firdosy, P. Bordeenithikasem, M. Sokoluk, M. Liese, J. Liu and X. Li, Welding and Additive Manufacturing with Nanoparticle-Enhanced Aluminum 7075 Wire, J. Alloys Compd., 2020, 834, p 154987.

    Article  CAS  Google Scholar 

  28. L. Hua, X. Hu and X.H. Han, Microstructure Evolution of Annealed 7075 Aluminum Alloy and its Influence on Room-Temperature Plasticity, Mater. Des., 2020, 196, p 109192.

    Article  CAS  Google Scholar 

  29. S. Li, L.J. Zhang, J. Ning, X. Wang, G.F. Zhang, J.X. Zhang and S.J. Na, Microstructures and Mechanical Properties of Al-Zn-Mg Aluminum Alloy Samples Produced by Wire + Arc Additive Manufacturing, J. Mater. Res. Technol., 2020, 9, p 13770–13780.

    Article  CAS  Google Scholar 

  30. T. Klein, M. Schnall, B. Gomes, P. Warczok, D. Fleischhacker and P.J. Morais, Wire-Arc Additive Manufacturing of a Novel High-Performance Al-Zn-Mg-Cu Alloy: Processing, Characterization And Feasibility Demonstration, Addit. Manuf., 2020, 37, p 101663.

    Google Scholar 

  31. Y. Liu, D.M. Jiang, B.Q. Li, T. Ying and J. Hu, Heating Aging Behavior of Al-8.35Zn-2.5Mg-2.25Cu Alloy, Mater. Des., 2014, 60, p 116–124.

    Article  CAS  Google Scholar 

  32. A. Loucif, R.B. Figueiredo, T. Baudin, F. Brisset, R. Chemam and T.G. Langdon, Ultrafine Grains and the Hall–Petch Relationship in an Al-Mg-Si Alloy Processed by High-Pressure Torsion, Mat. Sci. Eng. A-Struct., 2012, 532, p 139–145.

    Article  CAS  Google Scholar 

  33. Y. Liu, T.W. Liskiewicz and B.D. Beake, Dynamic Changes of Mechanical Properties Induced by Friction in the Archard Wear Model, Wear, 2019, 428–429, p 366–375.

    Article  Google Scholar 

  34. P. Liu, J.Y. Hu, H.X. Li, S.Y. Sun and Y.B. Zhang, Effect of Heat Treatment on Microstructure, Hardness and Corrosion Resistance of 7075 Al Alloys Fabricated by SLM, J. Manuf. Process., 2020, 60, p 578–585.

    Article  Google Scholar 

  35. H.C. Yu, M.P. Wang, X.F. Sheng, Z. Li, L.B. Chen, Q. Lei, C. Chen, Y.L. Jia, Z. **ao, W. Chen, H.G. Wei, H. Zhang, X. Fan and Y.G. Wang, Microstructure and Tensile Properties of Large-Size 7055 Aluminum Billets Fabricated by Spray Forming Rapid Solidification Technology, J. Alloys Compd., 2013, 578, p 208–214.

    Article  CAS  Google Scholar 

  36. Y.H. Zhou, X. Lin, N. Kang, W.D. Huang and Z.N. Wang, Mechanical Properties and Precipitation Behavior of the Heat-Treated Wire + Arc Additively Manufactured 2219 Aluminum Alloy, Mater. Charact., 2020, 171, p 110735.

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by Guizhou Provincial Science and Technology Foundation (QKHJC ZK [2021] general 241), Guizhou Provincial Science and Technology Support Project (QKHZC [2021] general 309), Natural Science Research Project of Guizhou Provincial Education Department (QJH KY Z [2021]098) and Fostering Projects of Guizhou University ([2020]66).

Author information

Authors and Affiliations

Authors

Contributions

PX: designed the experiment and modify the manuscript; ZH: performed the experiment and Write the manuscript; CP: Revise manuscripts and lab instructions; QL: Provide theoretical support; SL: Theoretical guidance and manuscript writing guidance; JL: Guide the completion of experiments.

Corresponding author

Correspondence to Peng Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Xu, P., Pang, C. et al. Microstructure and Mechanical Properties of a High-Ductility Al-Zn-Mg-Cu Aluminum Alloy Fabricated by Wire and Arc Additive Manufacturing. J. of Materi Eng and Perform 31, 6459–6472 (2022). https://doi.org/10.1007/s11665-022-06715-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06715-6

Keywords

Navigation