Log in

Mechanical Properties and Corrosion Resistance of Cold Metal Transfer Small-Bore Thin-Walled Tube Butt Welded Joints of UNS S32205 Duplex Stainless Steel

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The cold metal transfer (CMT) was used to obtain the UNS S32205 Duplex Stainless Steel (DSS) small-bore thin-walled (SBTW) tubes butt joint to study the mechanical and corrosion properties sensitivity of welded joint in low heat input. With the increase in welding heat input, the Widmanstätten-like austenite (WA) becomes thicker and longer while part of them transform into massive austenite. In addition, the two-phase alloying elements gradually tend to be homogenized. The tensile strength of UNS S32205 DSS butt welded joints are above 840 MPa and progressively decreased with increasing the welding heat input. The microhardness of the heat-affected zone (HAZ) is the highest, followed by the weld zone (WZ) and base metal (BM). Welding heat input has a particular effect on the corrosion resistance of welded joints, and the pitting and electrochemical corrosion resistance are slightly weaker than BM. In the test process range, the corrosion resistance of the welded joint is the best under the 1.81kJ/cm heat input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The raw/processed data will be made available on request.

References:

  1. L.F. Song, Z.Y. Liu, J.P. Hu et al., Stress Corrosion Cracking of 2205 Duplex Stainless Steel with Simulated Welding Microstructures in Simulated Sea Environment at Different Depths, J. Mater. Eng. Perform., 2020, 29(8), p 5476–5489. https://doi.org/10.1007/s11665-020-05052-w

    Article  CAS  Google Scholar 

  2. M. Mortean, A. Buschinelli, K.V. De Paiva et al., Diffusion Welding of Stainless Steels for Fabrication of Compact Heat Exchangers, Soldagem. Insp., 2016, 21(1), p 103–114. https://doi.org/10.1590/0104-9224/SI2101.10

    Article  Google Scholar 

  3. I. Mitelea, L. Micu, I. Bordeasu et al., Cavitation Erosion of Sensitized UNS S31803 Duplex Stainless Steels, J. Mater. Eng. Perform., 2016, 25(5), p 1939–1944. https://doi.org/10.1590/0104-9224/SI2101.10

    Article  CAS  Google Scholar 

  4. Y.Y. Ma, S. Yan, Z.G. Yang et al., Failure Analysis on Circulating Water Pump of Duplex Stainless Steel in 1000MW Ultra-Supercritical Thermal Power Unit, Eng. Fail. Anal., 2015, 47, p 162–177. https://doi.org/10.1016/j.engfailanal.2014.09.014

    Article  CAS  Google Scholar 

  5. M. Mishra, I. Balasundar, A. Rao et al., On the High Temperature Deformation Behaviour of 2507 Super Duplex Stainless Steel, J. Mater. Eng. Perform., 2017, 26(2), p 802–812. https://doi.org/10.1016/j.engfailanal.2014.09.014

    Article  CAS  Google Scholar 

  6. Y.Q. Mao, Y.H. Zheng, Y. Shi et al., Effect of Rolling Deformation on Microstructure and Mechanical Properties of 2205 Duplex Stainless Steel with Micro-nano Structure, Mod. Phys. Lett. B, 2020, 34(25), p 12. https://doi.org/10.1142/S0217984920502693

    Article  Google Scholar 

  7. M. Rahmani, A. Eghlimi and M. Shamanian, Evaluation of Microstructure and Mechanical Properties in Dissimilar Austenitic/Super Duplex Stainless Steel Joint, J. Mater. Eng. Perform., 2014, 23(10), p 3745–3753. https://doi.org/10.1007/s11665-014-1136-z

    Article  CAS  Google Scholar 

  8. A.M. Torbati, R.M. Miranda, L. Quintino et al., Welding Bimetal Pipes in Duplex Stainless Steel, Int. J. Adv. Manuf. Tech., 2011, 53(9–12), p 1039–1047. https://doi.org/10.1007/s00170-010-2889-7

    Article  Google Scholar 

  9. J. Verma, R.V. Taiwade, R.K. Khatirkar et al., Microstructure, Mechanical and Intergranular Corrosion Behavior of Dissimilar DSS 2205 and ASS 316L Shielded Metal Arc Welds, T. Indian I Metals., 2017, 70(1), p 225–237. https://doi.org/10.1007/s12666-016-0878-8

    Article  CAS  Google Scholar 

  10. R.V. Selvan, P. Sathiya and G. Ravichandran, Welding Behaviour of Duplex Stainless Steel AISI 2205: AReview, Mater. Today- Process., 2015, 18, p 2731–2737. https://doi.org/10.1016/j.matpr.2019.07.136

    Article  CAS  Google Scholar 

  11. Y. Wan, W. Jiang, M. Song et al., Distribution and Formation Mechanism of Residual Stress in Duplex Stainless Steel Weld Joint by Neutron Diffraction and Electron Backscatter Diffraction, Mater. Design., 2019 https://doi.org/10.1016/j.matdes.2019.108086

    Article  Google Scholar 

  12. A.F.M. Perez, M. Breda, I. Calliari et al., Detrimental Cr-rich Phases Precipitation on SAF 2205 Duplex Stainless Steels Welds After Heat Treatment, Soldagem Insp., 2016, 21, p 165–171. https://doi.org/10.1590/0104-9224/SI2102.06

    Article  CAS  Google Scholar 

  13. S.I. Shah, H.R. Thakkar, K. Patel et al., Investigation of Microstructure and Mechanical Properties of DSS 2205 Weld Thick Section for Pressure Vessel Application, T. Indian. I Metals, 2021, 74(8), p 2073–2080. https://doi.org/10.1007/s12666-021-02284-9

    Article  CAS  Google Scholar 

  14. B. Varbai, T. Pickle and K. Majlinger, Effect of Heat Input and Role of Nitrogen on The Phase Evolution of 2205 Duplex Stainless Steel Weldment, Int. J. Pres. Ves. Pip., 2019, 176, p 308–161. https://doi.org/10.1016/j.ijpvp.2019.103952

    Article  CAS  Google Scholar 

  15. H.J. Sung, H.S. Na and C.Y. Kang, Effect of Dynamic Reheating Induced by Weaving on the Microstructure of GTAW Weld Metal of 25% Cr Super Duplex stainless steel Weld Metal, Metals, 2017, 7(11), p 490. https://doi.org/10.3390/met7110490

    Article  CAS  Google Scholar 

  16. S. Krasnorutskyi, C. Kipp, J. Hensel et al., Metallurgical Investigation of Electron Beam Welded Duplex Stainless Steel X2CrNiMoN22-5-3 with Plasma Nitrided Weld Edge Surfaces, Mater. Test, 2018, 60(6), p 577–582. https://doi.org/10.3139/120.111190

    Article  CAS  Google Scholar 

  17. J.S. Ku, N.J. Ho and S.C. Tjong, Properties of Electron Beam Welded SAF 2205 Duplex Stainless Steel, J. Mater. Process. Tech., 1997, 63(1), p 770–775. https://doi.org/10.1016/S0924-0136(96)02721-5

    Article  Google Scholar 

  18. J. Verma and R.V. Taiwade, Effect of Welding Processes and Conditions on The Microstructure, Mechanical Properties and Corrosion Resistance of Duplex Stainless Steel Weldments-a Review, J. Manuf. Process., 2016, 25, p 134–152. https://doi.org/10.1016/j.jmapro.2016.11.003

    Article  Google Scholar 

  19. N. Kumar, A. Kumar, A. Gupta et al., Gas Tungsten Arc Welding of 316L Austenitic Stainless Steel with UNS S32205 Duplex Stainless Steel, T. Indian I Metals, 2018, 71(2), p 361–372. https://doi.org/10.1007/s12666-017-1167-x

    Article  CAS  Google Scholar 

  20. S. Selvi, A. Vishvaksenan and E. Rajasekar, Cold Metal Transfer (CMT) Technology-An Overview, Def. Technol., 2018, 14(1), p 28–44. https://doi.org/10.1016/j.dt.2017.08.002

    Article  Google Scholar 

  21. O.A. Gomez, G.L. Corona, F. Deschaux-Beaume et al., Effect of Process Parameters on The Quality of Aluminium Alloy Al5Si Deposits in Wire And Arc Additive Manufacturing Using a Cold Metal Transfer Process, Sci. Technol. Weld. Joi., 2017, 23(4), p 1–17. https://doi.org/10.1080/13621718.2017.1388995

    Article  CAS  Google Scholar 

  22. P. Luchtenberg, P.T. de Campos, P. Soares et al., Effect of Welding Energy on The Corrosion and Tribological Properties of Duplex Stainless Steel Weld Overlay Deposited by GMAW/CMT Process, Surf. Coat. Tech., 2019, 375, p 688–693. https://doi.org/10.1016/j.surfcoat.2019.07.072

    Article  CAS  Google Scholar 

  23. A. Sengupta and M. Balogh, Transmission Electron Microscopy Study of Stress-Ruptured Aged 304H Stainless Steel after Prolonged Exposure in Service, J. Mater. Eng. Perform., 1996, 5(6), p 691–694. https://doi.org/10.1007/BF02646903

    Article  CAS  Google Scholar 

  24. G. Argandona, M. Biezma, J. Berrueta et al., Detection of Secondary Phases in UNS S32760 Superduplex Stainless Steel by Destructive and Non-destructive Techniques, J. Mater. Eng. Perform., 2016, 25(12), p 5269–5279. https://doi.org/10.1016/j.jmapro.2016.11.003

    Article  CAS  Google Scholar 

  25. V. Balázs, P. Timothy and M. Kornél, Development and Comparison of Quantitative Phase Analysis for Duplex Stainless Steel Weld, Period Polytech-Mech., 2018, 62(3), p 247–253. https://doi.org/10.3311/PPme.12234

    Article  Google Scholar 

  26. A. Rwierczynska, J. Labanowski and D. Fydrych, The Effect of Welding Conditions on Mechanical Properties of Superduplex Stainless Steel Welded Joints, Adv. Mater. Sci., 2014, 14(1), p 14–23. https://doi.org/10.2478/adms-2014-0002

    Article  Google Scholar 

  27. Z.Q. Zhang, H.Y. **g, L.Y. Xu et al., The Impact of Annealing Temperature on Improving Microstructure and Toughness of Electron Beam Welded Duplex Stainless Steel, J. Manuf. Process, 2017, 31, p 568–582. https://doi.org/10.1016/j.jmapro.2017.12.018

    Article  CAS  Google Scholar 

  28. K. Ogawa and T. Osuki, Effects of Alloying Elements on Sigma Phase Precipitation in Duplex Stainless Steel (2) - Effects of Alloying Chromium, Molybdenum and Tungsten on C-curve of Sigma Phase Precipitation in Duplex Stainless Steel, Isij Int., 2019, 59(1), p 129–135. https://doi.org/10.2355/isi**ternational.ISIJINT-2018-478

    Article  CAS  Google Scholar 

  29. M.M. Pan, X.M. Zhang, P. Chen et al., The Effect of Chemical Composition and Annealing Condition on The Microstructure and Tensile Properties of A Resource-Saving Duplex Stainless Steel, Mat. Sci. Eng. A-Struct., 2020 https://doi.org/10.1016/j.msea.2020.139540

    Article  Google Scholar 

  30. K. Martinsen, S. Hu and B. Carlson, Joining of Dissimilar Materials, Cirp. Ann-manuf .Techn., 2015, 64(2), p 679–699. https://doi.org/10.1590/S1516-14392010000400003

    Article  Google Scholar 

  31. J.E. May, C.A.C. de Souza, P.A.D. Nascente et al., Effect of Thermal Aging Conditions on the Corrosion Properties and Hardness of a Duplex Stainless Steel, Mater. Res-ibero-am J., 2010, 13(4), p 431–436. https://doi.org/10.1149/1.1391569

    Article  CAS  Google Scholar 

  32. E. Mccafferty, Introduction to corrosion science, Springer, New York, 2010.

    Book  Google Scholar 

  33. M.P. Ryan, N.J. Laycock, H.S. Isaacs et al., Effect of Dissolved Oxygen on Electrochemical Corrosion Behavior of 2205 Duplex Stainless Steel in Hot Concentrated Seawater, J. Mater. Sci., 2020, 66, p 177–185. https://doi.org/10.1016/j.jmst.2020.06.030

    Article  CAS  Google Scholar 

  34. C.F. Dong, H. Luo, K. **ao et al., Effect of Temperature and Cl- Concentration on Pitting of 2205 Duplex Stainless Steel, J. Wuhan Univ. Technol., 2011, 26(4), p 641–647. https://doi.org/10.1007/s11595-011-0283-4

    Article  CAS  Google Scholar 

  35. M.J. Carmezim, A.M. Simoes, M.F. Montemor et al., Capacitance Behaviour of Passive Films on Ferritic and Austenitic Stainless Steel, Corros. Sci., 2005, 47(3), p 581–591. https://doi.org/10.1016/j.corsci.2004.07.002

    Article  CAS  Google Scholar 

  36. M.F. Montemor, M.G.S. Ferreira, N.E. Hakiki et al., Chemical Composition and Electronic Structure of the Oxide Films Formed on 316L Stainless Steel and Nickel Based Alloys in High Temperature Aqueous Environments, Corros. Sci., 2000, 42(9), p 1635–1650. https://doi.org/10.1016/S0010-938X(00)00012-3

    Article  CAS  Google Scholar 

  37. H. Luo, C.F. Dong, X.Q. Cheng et al., Electrochemical Behavior of 2205 Duplex Stainless Steel in NaCl Solution with Different Chromate Contents, J. Mater. Eng. Perform., 2012, 21(7), p 1283–1291. https://doi.org/10.1007/s11665-011-0030-1

    Article  CAS  Google Scholar 

  38. I. Betova, M. Bo**ov, T. Laitinen et al., The Transpassive Dissolution Mechanism of Highly Alloyed Stainless Steels I. Experimental Results And Modelling Procedure, Corros. Sci., 2002, 44(12), p 2675–2697. https://doi.org/10.1016/S0010-938X(02)00073-2

    Article  CAS  Google Scholar 

  39. M. Itagaki, A. Matsuzaki, K. Watanabe et al., The Electrochemical Impedance Response of Transpassive Dissolution of Chromium in Neutral Solutions Containing Sodium-Chloride and Sodium-Fluoride, Corros. Sci., 1995, 37(11), p 1867–1878. https://doi.org/10.1016/0010-938X(95)00092-X

    Article  CAS  Google Scholar 

  40. M.H. Mamme, J. Deconinck and J. Ustarroz, Transition Between Kinetic and Diffusion Control During The Initial Stages of Electrochemical Growth Using Numerical Modelling, Electrochim. Acta, 2017, 258, p 662–668. https://doi.org/10.1016/j.electacta.2017.11.111

    Article  CAS  Google Scholar 

  41. P. Radhakrishnamurty and P. Adaikkalam, Ph-Potential Diagrams at Elevated Temperatures for the Chromium/Water System, Corros. Sci., 1982, 22(18), p 753–73. https://doi.org/10.1016/0010-938X(82)90012-9

    Article  CAS  Google Scholar 

  42. R. Qvarfort, Some observations regarding the influence of molybdenum on the pitting corrosion resistance of stainless steels, Corros. Sci., 1998, 40(2–3), p 215–223. https://doi.org/10.1016/S0010-938X(97)00118-2

    Article  CAS  Google Scholar 

  43. K.V. Rybalka, L.A. Beketaeva, A.D. Davydov et al., Effect of Dissolved Oxygen on the Corrosion Rate of Stainless Steel in a Sodium Chloride Solution, Russ. J. Electrochem., 2018, 54(12), p 1284–1287. https://doi.org/10.1134/S1023193518130384

    Article  CAS  Google Scholar 

  44. R. Leiva-Garcia, M.J. Munoz-Portero and J. Garcia-Anton, Corrosion Behaviour of Sensitized and Unsensitized Alloy 900 (UNS 1.4462) in Concentrated Aqueous Lithium Bromide Solutions at Different Temperatures, Corros. Sci., 2010, 52(3), p 950–959. https://doi.org/10.1016/10.1016/j.corsci.2009.11.018

    Article  CAS  Google Scholar 

  45. Y. **, Z.G. Lai, P. Bi et al., Combining Lithography and Capillary Techniques for Local Electrochemical Property Measurements, Electrochem. Commun., 2017, 87, p 53–57. https://doi.org/10.1016/j.elecom.2017.12.027

    Article  CAS  Google Scholar 

  46. M. Makhdoom, A. Ahmad, M. Kamran et al., Microstructural and Electrochemical Behavior of 2205 Duplex Stainless Steel Weldments, Surf. Interfaces, 2017, 9, p 189–195. https://doi.org/10.1016/j.surfin.2017.09.007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (grant number 51705461, 51975530), and the Natural Science Foundation of Zhejiang Province (grant number LGG20E050016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjian Zheng.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Zheng, W., Feng, D. et al. Mechanical Properties and Corrosion Resistance of Cold Metal Transfer Small-Bore Thin-Walled Tube Butt Welded Joints of UNS S32205 Duplex Stainless Steel. J. of Materi Eng and Perform 31, 4531–4544 (2022). https://doi.org/10.1007/s11665-021-06569-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06569-4

Keywords

Navigation