Log in

Effect of Magnetic-Mechanical Coupled Stirring on the Distribution of B4C Particles in Al-B4C Composites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The Al-B4C composites are interestingly used for neutron shielding due to its low weight, high strength, and neutron absorbing. However, during manufacturing process of Al-B4C composites, high content of B4C which leads to aggregation is main problem, as well as the low content resulting in poor neutron absorbing. To solve these problems, this study tries to improve the stirring systems by applying a magnetic field based on traditional mechanical stirring and changing the number and shape of the blade of impeller to enhance the flow of the turbulent kinetic energy to maximizes molten aluminum stirring effects. Compared to the traditional mechanical stirring, simulation, and experimentation showed magnetic-mechanical coupled stirring has the higher turbulent kinetic energy, and the dead region is greatly reduced. From the numerical investigations and experiments in the present work, an optimal configuration was selected based on the particle distribution in the magnetic-mechanical coupled stirring. When the stirring time is 30-40 min, the Al-31 wt.% B4C composites were successfully manufactured and with the B4C particles homogeneously distributed in matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. R. Prăvălie and G. Bandoc, Nuclear Energy: Between Global Electricity Demand, Worldwide Decarbonisation Imperativeness, and Planetary Environmental Implications, J. Environ. Manage., 2018, 209, p 81–92.

    Article  Google Scholar 

  2. P. Liu, P. Chu and J. Hou, Accommodation Issue of Nuclear Power in China: Status Quo, Barriers and Solutions, Energy Strat. Rev., 2018, 22, p 166–178.

    Article  Google Scholar 

  3. Z.G. Xu, L.T. Jiang, Q. Zhang, J. Qiao and G.H. Wu, The Microstructure and Influence of Hot Extrusion on Tensile Properties of (Gd+B4C)/Al Composite, J. Alloy. Compd., 2017, 729, p 1234–1243.

    Article  CAS  Google Scholar 

  4. B. Tozkoparan, B. Dikici, M. Topuz et al., Al-5Cu/B4Cp Composites: The Combined Effect of Artificially Aging (T6) and Particle Volume Fractions on the Corrosion Behaviour, Adv. Powder Technol., 2020, 31(7), p 2833–2842.

    Article  CAS  Google Scholar 

  5. J. Hashim, L. Looney and M.S.J. Hashmi, Metal Matrix Composites: Production by the Stir-Casting Method, J. Mater. Process. Technol., 1999, 92–93, p 1–7.

    Article  Google Scholar 

  6. C. Wu, S. **e, Y. Li, H. Xu and Y. Chen, Effects of Al Addition on the Phase Transformation and Interfacial Evolution in Multilayer Ti-B4C Composite, Ceram. Int., 2018, 44, p 4121–4125.

    Article  CAS  Google Scholar 

  7. G. Burlak, M. Vlasova, P. Aguilar et al., Optical Percolation in Ceramics Assisted by Porous Clusters, Opt. Commun., 2009, 282(14), p 2850–2856.

    Article  CAS  Google Scholar 

  8. G. Burlak, A. Díaz-De-Anda, Y. Karlovich et al., Critical Behavior of Nanoemitter Radiation in a Percolation Material, Phys. Lett. A, 2009, 373(16), p 1492–1499.

    Article  CAS  Google Scholar 

  9. N.K. Sharma, R.K. Misra and S. Sharma, Experimental Characterization and Numerical Modeling of Thermo-Mechanical Properties of Al-B4C Composites, Ceram. Int., 2017, 43, p 513–522.

    Article  CAS  Google Scholar 

  10. B. Chandra Kandpal, J. Kumar and H. Singh, Manufacturing and Technological Challenges in Stir-Casting of Metal Matrix Composites: A Review, Mater. Today Proc., 2018, 5, p 5–10.

    Article  CAS  Google Scholar 

  11. T. Yamamoto, K. Kato, S.V. Komarov, Y. Ueno, M. Hayashi and Y. Ishiwata, Investigation of Melt Stirring in Aluminum Melting Furnace Through Water Model, J. Mater. Process. Technol., 2018, 259, p 409–415.

    Article  CAS  Google Scholar 

  12. J.F. Bilodeau, C. Lakroni and Y. Kocaefe, Modeling of Rotary Injection Process for Molten Aluminum Processing, Light Metals, 2001, 2001, p 1009–1015.

    Google Scholar 

  13. R. Panneerselvam, S. Savithri and G.D. Surender, CFD Simulation of Hydrodynamics of Gas–Liquid–Solid Fluidised Bed Reactor, Chem. Eng. Sci., 2009, 64, p 1119–1135.

    Article  CAS  Google Scholar 

  14. S. Fashu and R. Khan, Comparison Between Axial and Radial Melt Stirring on Purification of Industrial Aluminum During Ohno Continuous Casting, Eng. Sci. Technol. Int. J., 2016, 19, p 2100–2108.

    Google Scholar 

  15. A.T. Thomas, R. Parameshwaran, A. Muthukrishnan and M.A. Kumaran, Development of Feeding & Stirring Mechanisms for Stir-casting of Aluminium Matrix Composites, Procedia Mater. Sci., 2014, 5, p 1182–1191.

    Article  CAS  Google Scholar 

  16. M. Jensen and Y. Yue, Effect of stirring on striae in glass melts, J. Non-Cryst. Solids, 2012, 358, p 349–353.

    Article  CAS  Google Scholar 

  17. S. Louhenkilpi, Chapter 1.8: Continuous Casting of Steel, Treatise on Process Metallurgy. S. Seetharaman Ed., Elsevier, Boston, 2014, p 373–434

    Chapter  Google Scholar 

  18. U.K.G.B. Annigeri Veeresh Kumar, Method of Stir-Casting of Aluminum metal matrix Composites: A review, Mater. Today Proc., 2017, 4, p 1140–1146.

    Article  Google Scholar 

  19. A. Kumar, S. Kumar and N.K. Mukhopadhyay, Introduction to Magnesium Alloy Processing Technology and Development of Low-Cost Stir-Casting Process for Magnesium Alloy and Its Composites, J. Magn. Alloys., 2018, 6, p 245–254.

    Article  CAS  Google Scholar 

  20. B.J. Smith, P.A. Warke, J.P. McGreevy and H.L. Kane, Salt-Weathering Simulations Under Hot Desert Conditions: Agents of Enlightenment or Perpetuators of Preconceptions, Geomorphology, 2005, 67, p 211–227.

    Article  Google Scholar 

  21. R.Q. Liang, J.H. Ji, F.S. Yan and J.C. He, Numerical Study on Flow Characteristics in a Stirring Vessel, Appl. Mech. Mater., 2012, 130–134, p 3050–3053.

    Article  Google Scholar 

  22. H. Su, W. Gao, H. Zhang, H. Liu, J. Lu and Z. Lu, Optimization of Stirring Parameters Through Numerical Simulation for the Preparation of Aluminum Matrix Composite by Stir-casting Process, J. Manuf. Sci. Eng., 2010, 132, p 061007.

    Article  Google Scholar 

  23. P.K. Rohatgi, J. Sobczak, R. Asthana and J.K. Kim, Inhomogeneities in Silicon Carbide Distribution in Stirred Liquids: A Water Model Study for Synthesis of Composites, Mater. Sci. Eng., A, 1998, 252, p 98–108.

    Article  Google Scholar 

  24. J. Zhang, Z. Gao, Y. Cai, H. Cao, Z. Cai and Y. Bao, Power Consumption and Mass Transfer in a Gas-Liquid-Solid Stirred Tank Reactor with Various Triple-Impeller Combinations, Chem. Eng. Sci., 2017, 170, p 464–475.

    Article  CAS  Google Scholar 

  25. M. Hernández-Hernández, J.L. Camacho-Martínez, C. González-Rivera and M.A. Ramírez-Argáez, Impeller Design Assisted by Physical Modeling and Pilot Plant Trials, J. Mater. Process. Technol., 2016, 236, p 1–8.

    Article  Google Scholar 

  26. T.T. Tran, T.T. Vo, S.C. Cho, H.L. Dong and W.R. Hwang, A Stir-Casting System for Drawdown of Light Particles in Manufacturing of Metal Matrix Composites, J. Mater. Process. Technol., 2018, 257, p 123–131.

    Article  Google Scholar 

  27. R. Harichandran and N. Selvakumar, Effect of Nano/Micro B4C Particles on the Mechanical Properties of Aluminium Metal Matrix Composites Fabricated by Ultrasonic Cavitation-Assisted Solidification Process, Arch. Civ. Mech. Eng., 2016, 16, p 147–158.

    Article  Google Scholar 

  28. J. Campbell, Chapter 17: Controlled Solidification Techniques, Complete Casting Handbook, 2nd ed., J. Campbell Ed., Butterworth-Heinemann, Boston, 2015, p 883–891

    Chapter  Google Scholar 

  29. J. Zhao and Q. Li, Study on Interfacial Phenomena in Aluminum-Aluminum Bimetal Fabricated by Extrusion at Different Temperatures, J. Mater. Eng. Perf., 2019, 28, p 1122–1131.

    Article  CAS  Google Scholar 

  30. S. Mohan, Influence of Stirring Speed and Stirring Time on Distribution of Particles in Cast Metal Matrix Composite, J. Mater. Process. Technol., 2006, 171, p 268–273.

    Article  Google Scholar 

  31. Y. Li, Q. Li, W. Liu and G. Shu, Effect of Ti Content and Stirring Time on Microstructure and Mechanical Behavior of Al-B4C Composites, J. Alloys Compd., 2016, 684, p 496–503.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially support by the Joint funds of National Natural Science Foundation of China (No. U530108) and the Program for Innovative Research Team of Huizhou University (IRTHZU). The authors sincerely acknowledge the anonymous reviewers for their insights and comments to the further improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiulin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Li, Q. Effect of Magnetic-Mechanical Coupled Stirring on the Distribution of B4C Particles in Al-B4C Composites. J. of Materi Eng and Perform 31, 907–917 (2022). https://doi.org/10.1007/s11665-021-06294-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06294-y

Keywords

Navigation