Log in

Different Cr Contents on the Microstructure and Tribomechanical Properties of Multi-Layered Diamond-Like Carbon Films Prepared by Unbalanced Magnetron Sputtering

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

To investigate the effects of Cr do** on the microstructure and tribological properties of multi-layered diamond-like carbon (DLC) films, Cr-DLC films with Cr contents ranging from 0 to 22 at.% were deposited on 0Cr19Ni10 stainless steel and Si wafer surfaces by unbalanced magnetron sputtering. The thickness of the transition layer is 180 nm and the Cr-DLC film ranging from 1.3 to 1.5 µm. The microstructure, mechanical and tribological properties of the films were systematically investigated at room temperature in atmospheric environment. Results show that increasing the Cr target current can effectively improve the incident particle density and reduce surface roughness. As a strong carbon metal, Cr has significant influence on the structure and properties of the film for bonding with carbon atoms during deposition. High-energy Cr particles are favorable for films to increase the sp3 hybrid bond ratio and reduce internal stress. The high-hardness sp3 hybrid phase, Cr carbide, oxide dispersion can effectively improve the mechanical properties of the film, but overdo** is detrimental for mechanical properties of the film. The internal stress shows a continuous trend of decreasing with the increasing Cr content and it reduced up to 80% compared with pure DLC films. The films prepared with Cr sputtering current of 0.4 A demonstrate the best tribological properties, and the friction coefficient and wear rate are 0.15 and 2.9 × 10−7 mm3/Nm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X. Xu, J. Qin, and Z. Li, Research Advances of Graphene, Prog. Chem., 2009, 21(12), p 2559–2567

    CAS  Google Scholar 

  2. L. Bai, G. Zhang, Z. Lu, Z. Wu, Y. Wang, L. Wang, and P. Yan, Tribological Mechanism of Hydrogenated Amorphous Carbon Film Against Pairs: A Physical Description, J. Appl. Phys., 2011, 110(3), p 6140–6748

    Google Scholar 

  3. Ö.D. Coşkun and T. Zerrin, Optical, Structural and Bonding Properties of Diamond-Like Amorphous Carbon Films Deposited by DC Magnetron Sputtering, Diam. Relat. Mater., 2015, 56, p 29–35

    Google Scholar 

  4. P. Mahtani, K.R. Leong, I. **ao, A. Chutinan, N.P. Kherani, and S. Zukotynski, Diamond-Like Carbon Based Low-Emissive Coatings, Sol. Energy Mater. Sol. Cells, 2011, 95(7), p 1630–1637

    CAS  Google Scholar 

  5. S.C.H. Kwok, W. Zhang, G.J. Wan, D.R. McKenzie, M.M.M. Bilek, and P.K. Chu, Hemocompatibility and Anti-Bacterial Properties of Silver Doped Diamond-Like Carbon Prepared by Pulsed Filtered Cathodic Vacuum Arc Deposition, Diam. Relat. Mater., 2007, 16(4–7), p 1353–1360

    CAS  Google Scholar 

  6. D. Fu, D. **e, C.H. Zhang, C. Zhang, and L. Liu, Preparation and Characteristics of Nanoscale Diamond-Like Carbon Films for Resistive Memory Applications, Chin. Phys. Lett., 2010, 27(9), p 225–228

    Google Scholar 

  7. B.Y. Zhang, Q.U. Yan-Qing, H.M. **e, and C.Y. Nie, Review of Preparation and Application of Diamond-Like Carbon Films, Surf. Technol., 2007, 36(3), p 70–73

    Google Scholar 

  8. A.A. Voevodin, J.M. Schneider, C. Rebholz, and A. Matthews, Multilayer Composite Ceramicmetal-DLC Coatings for Sliding Wear Applications, Tribol. Int., 1996, 29(7), p 559–570

    CAS  Google Scholar 

  9. F.J. Li, S. Zhang, J. Kong, Y. Zhang, and W. Zhang, Multilayer DLC Coatings Via Alternating Bias During Magnetron Sputtering, Thin Solid Films, 2011, 519(15), p 4910–4916

    CAS  Google Scholar 

  10. X. Sui, J. Liu, S. Zhang, J. Yang, and J. Hao, Microstructure, Mechanical and Tribological Characterization of CrN/DLC/Cr-DLC Multilayer Coating with Improved Adhesive Wear Resistance, Appl. Surf. Sci., 2018, 439, p 24–32

    CAS  Google Scholar 

  11. J.Y. Jao, S. Han, L.S. Chang, Y.-C. Chen, C.-L. Chang, and H.C. Shih, Formation and Characterization of DLC:Cr: Cu Multi-layers Coating Using Cathodic Arc Evaporation, Diam. Relat. Mater., 2009, 18(2–3), p 368–373

    CAS  Google Scholar 

  12. Y.J. Jo, T.F. Zhang, M.J. Son, and K.H. Kim, Synthesis and Electrochemical Properties of Ti-Doped DLC Films by a Hybrid PVD/PECVD Process, Appl. Surf. Sci., 2018, 433, p 1184–1191

    CAS  Google Scholar 

  13. M. Goto, Preparations and Tribological Properties of Soft-Metal/DLC Composite Coatings by RF Magnetron Sputter Using Composite Targets, Int. J. Mech. Mater. Des., 2018, 14(3), p 313–327

    CAS  Google Scholar 

  14. F.M. Wang, M.W. Chen, and Q.B. Lai, Metallic Contacts to Nitrogen and Boron Doped Diamond-Like Carbon Films, Thin Solid Films, 2010, 518(12), p 3332–3336

    CAS  Google Scholar 

  15. S. Shen, J. Chen, X. Wang, L. Zhao, and L. Guo, Microwave-Assisted Hydrothermal Synthesis of Transition-Metal Doped ZnIn2S4 and Its Photocatalytic Activity for Hydrogen Evolution Under Visible Light, J. Power Sour., 2011, 196(23), p 10112–10119

    CAS  Google Scholar 

  16. R. Fernandes, N. Patel, A. Miotello, R. Jaiswal, and D.C. Kothari, Dehydrogenation of Ammonia Borane with Transition Metal-Doped Co-B Alloy Catalysts, Int. J. Hydrog. Energy, 2012, 37(3), p 2397–2406

    CAS  Google Scholar 

  17. N. Boubiche, J. El Hamouchi, J. Hulik, M. Abdesslam, C. Speisser, F. Djeffal, and F. Le Normand, Kinetics of Graphitization of Thin Diamond-Like Carbon (DLC) Films Catalyzed by Transition Metal, Diam. Relat. Mater., 2019, 91, p 190–198

    CAS  Google Scholar 

  18. W. Dai and A. Wang, Synthesis, Characterization and Properties of the DLC Films with Low Cr Concentration Do** by a Hybrid Linear Ion Beam System, Surf. Coat. Technol., 2011, 205(8–9), p 2882–2886

    CAS  Google Scholar 

  19. L. Yang, A. Neville, A. Brown, P. Ransom, and A. Morina, Friction Reduction Mechanisms in Boundary Lubricated W-Doped DLC Coatings, Tribol. Int., 2014, 70, p 26–33

    CAS  Google Scholar 

  20. X.S. Tang, H.J. Wang, L. Feng, L.X. Shao, and C.W. Zou, Mo Doped DLC Nanocomposite Coatings with Improved Mechanical and Blood Compatibility Properties, Appl. Surf. Sci., 2014, 311, p 758–762

    CAS  Google Scholar 

  21. M. Masuko, T. Ono, S. Aoki, A. Suzuki, and H. Ito, Friction and Wear Characteristics of DLC Coatings with Different Hydrogen Content Lubricated with Several Mo-containing Compounds and Their Related Compounds, Tribol. Int., 2015, 82, p 350–357

    CAS  Google Scholar 

  22. J.F.R. Robertson, Diamond-Like Amorphous Carbon, Mater. Sci. Eng. R Rep., 2002, 37(4–6), p 129–281

    Google Scholar 

  23. C. Donnet and A. Erdemir, Historical Developments and New Trends in Tribological and Solid Lubricant Coatings, Surf. Coat. Technol., 2004, 180-181(3), p 76–84

    CAS  Google Scholar 

  24. K. Holmberg, H. Ronkainen, A. Laukkanen, and K. Wallin, Friction and Wear of Coated Surfaces-Scales, Modelling and Simulation of Tribomechanisms, Surf. Coat. Technol., 2007, 202(4), p 1034–1049

    CAS  Google Scholar 

  25. L. Bai, N. Srikanth, H. Wu, Y. Liu, B. Liu, and K. Zhou, Investigation on Tensile Behaviors of Diamond-Like Carbon Films, J. Non-Cryst. Solids, 2016, 443, p 8–16

    CAS  Google Scholar 

  26. N. Dwivedi, S. Kumar, H.K. Malik, C. Sreekumar, S. Dayal, C.M.S. Rauthan, and O.S. Panwar, Investigation of Properties of Cu Containing DLC Films Produced by PECVD Process, J. Phys. Chem. Solids, 2012, 73(2), p 308–316

    CAS  Google Scholar 

  27. F.R. Marciano, L.F. Bonetti, L.V. Santos, N.S. Da-Silva, E.J. Corat, and V.J. Trava-Airoldi, Antibacterial Activity of DLC and Ag-DLC Films Produced by PECVD Technique, Diam. Relat. Mater., 2009, 18(5-8), p 1010–1014

    CAS  Google Scholar 

  28. Y. Wu, J. Chen, H. Li, L. Ji, Y. Ye, and H. Zhou, Preparation and Properties of Ag/DLC Nanocomposite Films Fabricated by Unbalanced Magnetron Sputtering, Appl. Surf. Sci., 2013, 284(11), p 165–170

    CAS  Google Scholar 

  29. X. Yu, M. Hua, and C. Wang, Influence of Ag Content and Nanograin Size on Microstructure, Mechanical and Sliding Tribological Behaviors of Ag-DLC Films, J. Nanosci. Nanotechnol., 2009, 9(11), p 6366–6371

    CAS  Google Scholar 

  30. R. Paul, R. Bhar, and A.K. Pal, Field Emission Properties of Composite Nano-Au/DLC Films Prepared by CVD Technique, Mater. Res. Bull., 2010, 45(5), p 576–583

    CAS  Google Scholar 

  31. M. Guozheng, X. Binshi, W. Haidou, C. Shuying, and X. Zhiguo, Excellent Vacuum Tribological Properties of Pb/PbS Film Deposited by RF Magnetron Sputtering and Ion Sulfurizing, ACS Appl. Mater. Interfaces., 2014, 6(1), p 532–538

    Google Scholar 

  32. W. Zhai, N. Srikanth, L.B. Kong, and K. Zhou, Carbon Nanomaterials in Tribology, Carbon, 2017, 119, p 150–171

    CAS  Google Scholar 

  33. J.A. Santiago, I. Fernández-Martínez, J.C. Sánchez-López, T.C. Rojas, A. Wennberg, V. Bellido-González, J.M. Molina-Aldareguia, M.A. Monclús, and R. González-Arrabal, Tribomechanical Properties of Hard Cr-Doped DLC Coatings Deposited by Low-Frequency HiPIMS, Surf. Coat. Technol., 2020, 382, p 124899. https://doi.org/10.1016/j.surfcoat.2019.124899

    Article  CAS  Google Scholar 

  34. M. Yan, X. Wang, S. Zhang, S. Zhang, X. Sui, W. Li, J. Hao, and W. Liu, Friction and wear properties of GLC and DLC coatings under ionic liquid lubrication, Tribol. Int., 2020, 143, p 106067

    CAS  Google Scholar 

  35. J. Wu, G. Wu, X. Kou, Z. Lu, and G. Zhang, Tribological Properties of Amorphous Carbon in Hydrochloric Acid with ta-C Counterpart, Surf. Coat. Technol., 2019, 380, p 125004

    CAS  Google Scholar 

  36. L. Tang, J. Kang, P. He, S. Ding, S. Chen, M. Liu, Y. **ong, G. Ma, and H. Wang, Effects of Spraying Conditions on the Microstructure and Properties of NiCrBSi Coatings Prepared by Internal Rotating Plasma Spraying, Surf. Coat. Technol., 2019, 374, p 625–633

    CAS  Google Scholar 

  37. L. Fayette, B. Marcus, and M. Mermoux, Local Order in CVD Diamond Films: Comparative Raman, x-ray-diffraction, and x-ray-absorption Near-Edge Studies, Phys. Rev. B, 1998, 57, p 14123–14132

    CAS  Google Scholar 

  38. S. Neuville, Quantum Electronic Mechanisms of Atomic Rearrangements During Growth of Hard Carbon Films, Surf. Coat. Technol., 2011, 206(4), p 703–726

    CAS  Google Scholar 

  39. K.K. Mishra, R. Rani, N. Kumar, T.R. Ravindran, K.J. Sankaran, and I.N. Lin, High Pressure Raman Spectroscopic Studies on Ultrananocrystalline Diamond Thin Films: Anharmonicity and Thermal Properties of the Grain Boundary, Diam. Relat. Mater., 2017, 80, p 45–53

    CAS  Google Scholar 

  40. A. Ferrari, Carlo, Determination of Bonding in Diamond-Like Carbon by Raman Spectroscopy, Diam. Relat. Mater., 2002, 11(3–6), p 1053–1061

    CAS  Google Scholar 

  41. A.C. Ferrari, B. Kleinsorge, N.A. Morrison, A. Hart, V. Stolojan, and J. Robertson, Stress Reduction and Bond Stability During Thermal Annealing of Tetrahedral Amorphous Carbon, J. Appl. Phys., 1999, 85(10), p 7190–7191

    Google Scholar 

  42. L. Tang, P. He, J. Kang, L. Wang, S. Ding, S. Chen, X. Zhu, F. **e, L. Zhou, G. Ma, and H. Wang, Significantly Enhanced Mechanical and Tribological Properties of Co-Based Alloy Coatings by Annealing Treatment, Tribol. Int., 2020, 146, p 106265. https://doi.org/10.1016/j.triboint.2020.106265

    Article  CAS  Google Scholar 

  43. C. Zou, H.J. Wang, L. Feng, and S.W. Xue, Effects of Cr Concentrations on the Microstructure, Hardness, and Temperature-Dependent Tribological Properties of Cr-DLC Coatings, Appl. Surf. Sci., 2013, 286, p 137–141

    CAS  Google Scholar 

  44. J.H. Choi, H.S. Ahn, S.C. Lee, and K.R. Lee, Stress Reduction Behavior in Metal-Incorporated Amorphous Carbon Films: First-Principles Approach, J. Phys: Conf. Ser., 2006, 29, p 155–158

    CAS  Google Scholar 

  45. C. Casiraghi, A.C. Ferrari, R. Ohr, A.J. Flewitt, and J. Robertson, Dynamic Roughening of Tetrahedral Amorphous Carbon, Phys. Rev. Lett., 2003, 91(22), p 226104

    CAS  Google Scholar 

  46. Z. Piao, Z. Zhou, J. Xu, and H. Wang, Use of x-ray Computed Tomography to Investigate Rolling Contact Cracks in Plasma Sprayed Fe-Cr-B-Si Coating, Tribol. Lett., 2018, 67(1), p 11

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support by National Natural Science Foundation of China (51675531, 51535011, 51605451), the Pre-Research Program in National 13th Five-Year Plan (61409230603, 61409220205), and Joint Fund of Ministry of Education for Pre-research of Equipment for Young Personnel Project (6141A02033120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-zheng Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Ln., Li, Jc., Kang, Jj. et al. Different Cr Contents on the Microstructure and Tribomechanical Properties of Multi-Layered Diamond-Like Carbon Films Prepared by Unbalanced Magnetron Sputtering. J. of Materi Eng and Perform 29, 7131–7140 (2020). https://doi.org/10.1007/s11665-020-05198-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05198-7

Keywords

Navigation