Log in

Design and Performance Evaluation of Al2O3-SiC Composite for Direct-Bonded Copper Substrate

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A computational material design approach is applied to propose a novel ceramic material for direct-bonded copper (DBC) substrate with enhanced thermal and structural performance. The material design inherently consists of many competing requirements that require careful decisions regarding key trade-offs in terms of material composition, inclusion size, shape, and distribution to achieve the target properties. The alumina-silicon (Al2O3-SiC) composite, as compared to commercial alumina, used in DBC is found to be the most suitable design among other candidates with improved thermal and structural properties. In order to study the performance characteristics and the effects of the new ceramic composite with improved properties in terms of structural behavior and fatigue life of the DBC substrate, the normal working and extreme thermal cycling conditions were simulated and analyzed using finite element method. The temperature, strain, and localized stress distribution within the substrate at a steady-state condition were analyzed, and the improved Coffin–Manson law was used to calculate the fatigue life of the substrate under extreme thermal cycling conditions. The proposed Al2O3-SiC composite is found to be more robust than the commercial alumina as DBC substrates considering the thermal–mechanical performance. The fatigue life cycle of the DBC substrate with the proposed material is predicted to be about two times longer than the commercial alumina DBC ceramic under transient thermal cycling test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y.S. Sun and J.C. Driscoll, A New Hybrid Power Technique Utilizing a Direct Copper to Ceramic Bond, IEEE Trans. Electron Devices, 1976, 23(8), p 961–967

    Article  Google Scholar 

  2. J.F. Burgess, C.A. Neugebauer, G. Flanagan, and R.E. Moore, The Direct Bonding of Metals to Ceramics and Application in Electronics, Electrocompon. Sci. Technol., 1976, 2(4), p 233–240

    Article  CAS  Google Scholar 

  3. J. Schulz-Harder, Advantages and New Development of Direct Bonded Copper Substrates, Microelectronics Reliability, 2003, 43, p 359–365

    Article  CAS  Google Scholar 

  4. G. Dong, X. Chen, X. Zhang, K.D.T. Ngo, and G.-Q. Lu, Thermal Fatigue Behaviour of Al2O3-DBC Substrates under High Temperature Cyclic Loading, Solder. Surf. Mt. Technol., 2010, 22(2), p 43–48. https://doi.org/10.1108/09540911011036280

    Article  CAS  Google Scholar 

  5. Y. Liu, Power Electronic Packaging, Springer, New York, 2012, https://doi.org/10.1007/978-1-4614-1053-9

    Book  Google Scholar 

  6. Y. Mei, G.Q. Lu, X. Chen, C. Gang, S. Luo, and D. Ibitayo, Investigation of Post-Etch Copper Residue on Direct Bonded Copper (DBC) Substrates, J. Electron. Mater., 2011, 40(10), p 2119–2125

    Article  CAS  Google Scholar 

  7. J. Schulz-Harder and K. Exel, Recent Developments of Direct Bonded Copper (DBC) Substrates for Power Modules, in Fifth International Conference on Electronic Packaging Technology Proceedings, 2003. ICEPT2003 (2003)

  8. H. He, R. Fu, D. Wang, X. Song, and M. **g, A New Method for Preparation of Direct Bonding Copper Substrate on Al2O3, Mater. Lett., 2007, 61(19–20), p 4131–4133

    Article  CAS  Google Scholar 

  9. K. Hromadka, J. Stulik, J. Reboun, and A. Hamacek, DBC Technology for Low Cost Power Electronic Substrate Manufacturing, Proc. Eng., 2014, 69, p 1180–1183

    Article  CAS  Google Scholar 

  10. J. Schulz-Harder, DBC Substrates as a Base for Power MCM’s, in Proceedings of 3rd Electronics Packaging Technology Conference (EPTC 2000) (Cat. No.00EX456), 2000, pp. 315–320

  11. A. Dehmel, J. Schulz-Harder, A. Roth, I. Baumeister, Direct Copper Bonded Ceramic Substrates for Use with Power LEDS, in Proceedings of the Electronic Packaging Technology Conference, EPTC, 2007, p 3–8

  12. J. Park, M. Kim, and A. Roth, Improved Thermal Cycling Reliability of ZTA (Zirconia Toughened Alumina) DBC Substrates by Manipulating Metallization Properties, in 2014 8th International Conference on Integrated Power Systems (CIPS), VDE, 2014

  13. M. Entezarian and R.A.L. Drew, Direct Bonding of Copper to Aluminum Nitride, Mater. Sci. Eng. A, 1996, 212(2), p 206–212

    Article  Google Scholar 

  14. Y. Yoshino, Role of Oxygen in Bonding Copper to Alumina, J. Am. Ceram. Soc., 1989, 72, p 1322–1327

    Article  CAS  Google Scholar 

  15. J. Lutz, T. Herrmann, M. Feller, R. Bayerer, T. Licht, and R. Amro, Power Cycling Induced Failure Mechanisms in the Viewpoint of Rough Temperature Environment, in 6th International Conference on Integration of Power Electronics Systems, 2008, pp. 224–237

  16. Y. Wei and J.W. Hutchinson, Nonlinear Delamination Mechanics for Thin Films, J. Mech. Phys. Solids, 1997, 45, p 1137–1159

    Article  CAS  Google Scholar 

  17. S. Pietranico, S. Pommier, S. Lefebvre, Z. Khatir, and S. Bontemps, Microelectronics Reliability Characterisation of Power Modules Ceramic Substrates for Reliability Aspects, Microelectron. Reliab. Elsevier Ltd, 2009, 49(9–11), p 1260–1266

    Article  CAS  Google Scholar 

  18. S. Pietranico, S. Pommier, S. Lefebvre, and S. Pattofatto, Thermal Fatigue and Failure of Electronic Power Device Substrates, Int. J. Fatigue Elsevier Ltd, 2009, 31(11–12), p 1911–1920

    Article  CAS  Google Scholar 

  19. V. Smet, F. Forest, J. Huselstein, F. Richardeau, Z. Khatir, S. Lefebvre, and M. Berkani, Ageing and Failure Modes of IGBT Modules in High Temperature Power Cycling, IEEE Trans. Ind. Electron., 2011, 58(10), p 4931–4941

    Article  Google Scholar 

  20. P. McCluskey, Reliability of Power Electronics under Thermal Loading, in 7th International Conference on Integrated Power Electronics Systems, 2012, pp. 1–8

  21. L. Xu, Y. Zhou, and S. Liu, DBC Substrate in Si- and SiC-Based Power Electronics Modules: Design, Fabrication and Failure Analysis, in 2013 IEEE 63rd Electronic Components and Technology Conference, 2013, 1(2), pp. 1341–1345

  22. K. Shimada, J. Komotori, and M. Shimizu, The Applicability of the Manson-Coffin Law and Miner’s Law to Extremely Low Cycle Fatigue, Trans. Jpn. Soc. Mech. Eng., 1987, 53(491), p 1178–1185

    Article  Google Scholar 

  23. L. Xue, A Unified Expression for Low Cycle Fatigue and Extremely Low Cycle Fatigue and Its Implication for Monotonic Loading, Int. J. Fatigue, 2008, 30, p 1691–1698

    Article  CAS  Google Scholar 

  24. L. Xu, M. Wang, Y. Zhou, Z. Qian, and S. Liu, An Optimal Structural Design to Improve the Reliability of Al2O3-DBC Substrates Under Thermal Cycling, Microelectron. Reliab., 2016, 56, p 101–108

    Article  CAS  Google Scholar 

  25. G. Dong, G. Lei, X. Chen, K. Ngo, and G.-Q. Lu, Edge Tail Length Effect on Reliability of DBC Substrates under Thermal Cycling, Solder. Surf. Mt. Technol., 2009, 21(3), p 10–15

    Article  CAS  Google Scholar 

  26. C. Van Godbold, V.A. Sankaran, and J.L. Hudgins, Thermal Analysis of High-Power Modules, IEEE Trans. Power Electron., 1997, 12(1), p 3–11

    Article  Google Scholar 

  27. S.S. Akhtar, L.T. Kareem, A.F.M. Arif, M.U. Siddiqui, and A.S. Hakeem, Development of a Ceramic-Based Composite for Direct Bonded Copper Substrate, Ceram. Int., 2017, 43(6), p 5236–5246

    Article  CAS  Google Scholar 

  28. Y. Liu, Power Electronic Packaging: Design, Assembly Process, Reliability and Modeling, Springer, 2012

  29. JEDEC Solid State Technology Association, JEDEC Standard JESD22-A104D, Temperature Cycling, Jedec.Org, 2009, (May 2005), p. 11

  30. Matweb.com, MatWeb, Material Property Data (2015)

  31. E.M. Dede, J. Lee, and T. Nomura, Multiphysics Simulation, Springer, London, 2014, https://doi.org/10.1007/978-1-4471-5640-6

    Book  Google Scholar 

  32. N. Zhu, Planar Metallization Failure Modes in Integrated Power Electronics Modules. Faculty of the Virginia Polytechnic Institute and State University, 2006, https://vtechworks.lib.vt.edu/bitstream/handle/10919/27530/NingZhuETDMay10.pdf?sequence=1

Download references

Acknowledgments

The authors would like to acknowledge the support of King Fahd University of Petroleum and Minerals for funding this work through project FT141009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Akhtar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhtar, S.S., Lemboye, K.T., Arif, A.F.M. et al. Design and Performance Evaluation of Al2O3-SiC Composite for Direct-Bonded Copper Substrate. J. of Materi Eng and Perform 27, 5831–5844 (2018). https://doi.org/10.1007/s11665-018-3702-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3702-2

Keywords

Navigation