Log in

Influence of Annealing Time and Thermo-Mechanical Cycling on Constrained Recovery Properties of a Cold-Worked NiTi Wire

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, the influence of parameters such as annealing time, pre-strain and thermo-mechanical cycling on recovery stresses of NiTi wires has been investigated by using a dynamic mechanical analyzer. The results show that the maximum recovery stress decreases with increasing annealing time and increases with increasing pre-strain except for 60-min annealed sample with 4% pre-strain, which has a higher recovery stress than 45-min annealed sample with the same pre-strain. The recovery stresses drastically increase during the first two thermo-mechanical cycles for all samples, regardless of annealing time. The observed changes of recovery stress could be attributed to different transformation temperatures and mechanical properties induced by different annealing times and/or thermo-mechanical cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Van Humbeeck, Non-Medical Application of Shape Memory Alloys, Mater. Sci. Eng. A, 1999, 273–275, p 134–148

    Article  Google Scholar 

  2. K. Otsuka and X. Ren, Recent Developments in the Research of Shape Memory Alloys, Intermetallics, 1999, 7, p 511–528

    Article  Google Scholar 

  3. D.A. Miller and D.C. Lagoudas, Influence of Cold Work and Heat Treatment on the Shape Memory Effect and Plastic Strain Development of NiTi, Mater. Sci. Eng. A, 2001, 308, p 161–175

    Article  Google Scholar 

  4. IYu Khmelevskaya, Effect of Initial Strengthening on Recovery Stress Generation and Isothermal Relaxation Processes in TiNi Alloys, J. Phys. IV Fr., 2001, 11, p 41–46

    Article  Google Scholar 

  5. W. Cai, C.S. Zhang, and L.C. Zhao, Recovery Stress of Ni-Ti-Nb Wide-Hysteresis Shape Memory Alloy Under Constant Strain and Thermomechanical Cycling, J. Mater. Sci. Lett., 1994, 13, p 8–9

    Article  Google Scholar 

  6. Y.J. Zheng, L.S. Cui, and J. Schrooten, Thermal Cycling Behavior of a NiTiCu Wire Reinforced Kevlar/Epoxy Composite, Mater. Lett., 2005, 59, p 3287–3290

    Article  Google Scholar 

  7. X.J. Yan and J. Van Humbeeck, Influence of Annealing on Recovery Stress of Cold-Worked NiTi Wire, Funct. Mater. Lett., 2009, 2, p 1–6

    Article  Google Scholar 

  8. H. Sadiq, M.B. Wong, R. Al-Mahaidi, and X.L. Zhao, The Effects of Heat Treatment on the Recovery Stresses of Shape Memory Alloys, Smart Mater. Struct., 2010, 19, p 1–7

    Article  Google Scholar 

  9. P. Šittner, D. Vokoun, G.N. Dayananda, and R. Stalmans, Recovery Stress Generation in Shape Memory Ti50Ni45Cu5 thin Wires, Mater. Sci. Eng. A, 2000, 286, p 298–311

    Article  Google Scholar 

  10. D. Vokoun, V. Kafka, and C.T. Hu, Recovery Stresses Generated by NiTi Shape Memory Wires Under Different Constraint Conditions, Smart Mater. Struct., 2003, 12, p 680–685

    Article  Google Scholar 

  11. W. Cai, C.S. Zhang, and L.C. Zhao, Recovery Stress in a Ni-Ti-Nb Shape Memory Alloy with Wide Transformation Hysteresis, J. Mater. Sci. Technol, 1994, 10, p 27–30

    Article  Google Scholar 

  12. P. Sittner, P. Lukas, V. Novak, D. Neov, and M. Ceretti, In Situ Neutron Diffraction Study of Stresses Generated by Shape Memory Alloys, J. Neutron Res., 2001, 9, p 143–150

    Article  Google Scholar 

  13. K.A. Tsoi, J. Schrooten, and R. Stalmans, Part I. Thermomechanical Characteristics of Shape Memory Alloys, Mater. Sci. Eng. A, 2004, 368, p 286–298

    Article  Google Scholar 

  14. K.A. Tsoi, J. Schrooten, and R. Stalmans, Part II. Thermomechanical Characteristics of Shape Memory Alloys, Mater. Sci. Eng. A, 2004, 368, p 299–310

    Article  Google Scholar 

  15. J. Schrooten, K.A. Tsoi, R. Stalmans, Y.J. Zheng, P. Sittner, Comparison Between Generation of Recovery Stresses in Shape Memory Wires and Composites: Theory and Reality, in Proceedings of the SPIE-4234, 2001, p 114–124

  16. D. Vokoun, R. Stalmans, Recovery Stresses Generated by NiTi Shape Memory Wires, in Proceedings of the SPIE-3667, 1999, p 825–835

  17. Eva L. Kirkby, Joseph D. Rule, Veronique J. Michaud, Nancy R. Sottos, Scott R. White, and Jan-Anders E. Manson, Embedded Shape-Memory Alloy Wires for Improved Performance of Self-Healing Polymers, Adv. Funct. Mater., 2008, 18, p 2253–2260

    Article  Google Scholar 

  18. V. Brailovski, E. Clément, P. Terriault, and F. Trochu, Influence of Stress Concentration on the Recovery Stress Generation, J. Phys. IV Fr., 2003, 112, p 231–234

    Article  Google Scholar 

  19. H.C. Lin, T.P. Wang, K.M. Lin, C.Y. Chung, P.C. Wang, and W.H. Ho, The Stress Relaxation of a Fe59Mn30Si6Cr5 Shape Memory Alloy, J. Alloys Compd., 2008, 466, p 119–125

    Article  Google Scholar 

  20. P. Papps, D. Bollas, J. Parthenios, V. Dracopoulos, and C. Galiotis, Transformation Fatigue and Stress Relaxation of Shape Memory Alloy Wires, Smart Mater. Stuct., 2007, 16, p 2560–2570

    Article  Google Scholar 

  21. Y.Q. Fu and H.J. Du, Relaxation and Recovery of Stress During Martensite Transformation for Sputtered Shape Memory TiNi Film, Surf. Coat. Technol., 2002, 153, p 100–105

    Article  Google Scholar 

  22. X.J. Yan and J. Van Humbeeck, Temperature and Time Dependence on Recovery Stress Relaxation in Nickel Titanium Wire During Isothermal Holding at High Temperatures, Strain, 2013, 49, p 451–455

    Article  Google Scholar 

  23. G. Tadayyon, M. Mazinani, Y. Guo, S.M. Zebarjad, S.A.M. Tofail, and M.J. Biggs, The Effect of Annealing on the Mechanical Properties and Microstructural Evolution of Ti-Rich NiTi Shape Memory Alloys, Mater. Sci. Eng. A, 2016, 662, p p564–p577

    Article  Google Scholar 

  24. W. Tillmann and S. Momeni, In-Situ Annealing of NiTi Thin Films at Different Temperatures, Sens. Actuators A Phys., 2015, 221, p 9–14

    Article  Google Scholar 

  25. X.B. Wang, B. Verlinden, and J. Van Humbeeck, Effect of Post-Deformation Annealing on the R-Phase Transformation Temperatures in NiTi Shape Memory Alloys, Intermetallics, 2015, 62, p 43–49

    Article  Google Scholar 

  26. X.B. Wang, B. Verlinden, and J. Van Humbeeck, R-Phase Transformation in NiTi Alloys, Mater. Sci. Technol., 2014, 30, p 1517–1529

    Article  Google Scholar 

  27. Y.J. Zheng, J. Schrooten, L.S. Cui, and J. Van Humbeeck, Constrained Thermoelastic Martensitic Transformation Studied by Modulated DSC, Acta Mater., 2003, 51, p 5467–5475

    Article  Google Scholar 

  28. K.A. Tsoi, R. Stalmans, and J. Schrooten, Transformational Behavior of Constrained Shape Memory Alloys, Acta Mater., 2002, 50, p 3535–3544

    Article  Google Scholar 

  29. D.Q. Jiang, L.S. Cui, Y.J. Yan, X.Q. Zhao, and Y. Li, Constrained Martensitic Transformation in an In Situ Lamella TiNi/NbTi Shape Memory Composite, Mater. Sci. Eng. A, 2009, 515, p 131–133

    Article  Google Scholar 

  30. Y. Li, L.S. Cui, H.B. Xu, and D.Z. Yang, Constrained Phase-Transformation of a TiNi Shape Memory Alloy, Metall. Trans. A, 2003, 34, p 219–223

    Article  Google Scholar 

  31. L.S. Cui, Y. Li, Y.J. Zheng, and D.Z. Yang, Two-Stage Recovery Strain of Prestrained TiNi Shape Memory Alloy After Phase Transformations Under Constraint, Mater. Lett., 2001, 47, p 286–289

    Article  Google Scholar 

  32. Y. Liu, Y. Liu, and J. Van Humbeeck, Two-Way Shape Memory Effect Developed by Martensite Deformation in NiTi, Acta Metall., 1999, 47, p 199–209

    Google Scholar 

  33. X.J. Yan and J. van Humbeeck, Effect of Annealing on Martensite Stabilization Due to Deformation Via Cooling Under Stress in Cold-Worked NiTi Thin Wire, Mater. Sci. Eng. A, 2012, 558, p 737–741

    Article  Google Scholar 

  34. X.J. Yan and J. Van Humbeeck, Evolution of Recovery Stress and Recovery Strain in Annealed NiTi thin Wire During Constrained Thermal Cycling to High Temperature, Adv. Eng. Mater., 2014, 16, p 80–84

    Article  Google Scholar 

  35. L.S. Cui and Y.J. Zheng, Self-Tension of Martensite During Constrained Transformation, Mater. Sci. Forum, 2005, 475–479, p 1937–1940

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of the Natural Science Foundation of Liaoning Province of China under Grant No. 2015020224.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aojun Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Ge, Y. & Van Humbeeck, J. Influence of Annealing Time and Thermo-Mechanical Cycling on Constrained Recovery Properties of a Cold-Worked NiTi Wire. J. of Materi Eng and Perform 26, 723–728 (2017). https://doi.org/10.1007/s11665-016-2468-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2468-7

Keywords

Navigation