Log in

Microstructure and Properties of DCP-Derived W-ZrC Composite Using Nontoxic Sodium Alginate to Fabricate WC Preform

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present work, tungsten carbide (WC) preforms were fabricated by gel-casting process, using different nontoxic Na-alginate to tertiary calcium phosphate ratios and different loadings of WC powder in the initial slurries. The gel-cast green bodies were dried and pre-sintered at 1723 K for 4 h and then reactively infiltrated by molten Zr2Cu at 1623 K for 0.5 h, to produce W-ZrC composite via displacive compensation of porosity process. The phases, microstructures, and mechanical properties of the preforms and the W-ZrC composites were investigated by Fourier transform infrared spectroscope, x-ray diffractometer (XRD), scanning electron microscope (SEM), image analyzer, and universal mechanical testing machine. XRD results, SEM micrographs, and elemental maps indicated uniform distribution of phases (W and ZrC) and elements (W, Zr, and C). Flexural strengths and hardness of the fabricated composites were in the ranges of 429-460 MPa and 7.5-9.5 GPa, respectively. Fractography studies revealed two types of dimple rupture and cleavage fracture modes in different composite samples. The W-ZrC composite was ablated by an oxyacetylene flame for 60 s. The mean value of mass and linear ablation rates of the composite were 2.1 ± 0.1 mg/s and 3.6 ± 0.5 µm/s, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M.B. Dickerson, P.J. Wurm, J.R. Schorr, W.P. Hoffman, P.G. Wapner, and K.H. Sandhage, Near Net-Shape, Ultra-High Melting, Recession-Resistant ZrC/W-Based Rocket Nozzle Liners via the Displacive Compensation of Porosity (DCP) Method, J. Mater. Sci., 2004, 39(19), p 6005–6015

    Article  Google Scholar 

  2. J.W. Park, J.Y. Suh, S.W. Kang, S.E. Shin, and D.H. Bae, The Effect of the Size and Volume Fraction of Zr2Cu on the Sintering Behavior of Tungsten Matrix Composites During Liquid-Reactive Sintering, Int. J. Refract. Met. Hard Mater., 2014, 43, p 157–163

    Article  Google Scholar 

  3. G.M. Song, Y. Zhou, and Y.J. Wang, Effect of Carbide Particles on the Ablation Properties of Tungsten Composites, Mater. Charact., 2003, 50(4–5), p 293–303

    Article  Google Scholar 

  4. Y.W. Zhao, Y.J. Wang, L. Chen, Y. Zhou, G.M. Son, and J.P. Li, Microstructure and Mechanical Properties of ZrC\W Matrix Composite Prepared by Reactive Infiltration at 1300 °C, Int. J. Refract. Met. Hard Mater., 2013, 37, p 40–44

    Article  Google Scholar 

  5. G.M. Song, Y.J. Wang, and Y. Zhou, Elevated Temperature Ablation Resistance and Thermophysical Properties of Tungsten Matrix Composites Reinforced with ZrC Particles, J. Mater. Sci., 2001, 36(19), p 4625–4631

    Article  Google Scholar 

  6. G.M. Song, Y. Zhou, Y.J. Wang, and T.C. Lei, Elevated Temperature Strength of a 20 vol.% ZrCp/W Composite, J. Mater. Sci. Lett., 1998, 17, p 1739–1741

    Article  Google Scholar 

  7. S.C. Zhang, G.E. Hilmas, and W.G. Fahrenholtz, Zirconium Carbide-Tungsten Cermets Prepared by In Situ Reaction Sintering, J. Am. Ceram. Soc., 2007, 90(6), p 1930–1933

    Article  Google Scholar 

  8. T.Q. Zhang, Y.J. Wang, Y. Zhou, and G.M. Song, Effect of ZrC Particle Size on Microstructure and Room Temperature Mechanical Properties of ZrCp/W Composites, Mater. Sci. Eng. A., 2010, 527(16–17), p 4021–4027

    Article  Google Scholar 

  9. M.B. Dickerson, R.L. Snyder, and K.H. Sandhage, Dense, Near-Shaped, Carbide/Refractory Metal Composites at Modest Temperature by the Displacive Compensation of Porosity (DCP) Method, J. Am. Ceram. Soc., 2002, 85(3), p 730–732

    Article  Google Scholar 

  10. Z. Grzesik, M.B. Dikerson, and K.H. Sandhage, Incongruent Reduction of Tungsten Carbide by a Zirconium-Copper Melt, J. Mater. Res. Soc., 2003, 18(9), p 2135–2140

    Article  Google Scholar 

  11. K.H. Sandhage and P. Kumar, Method for Fabricating Shape Monolithic Ceramic, U.S. Patent no. 6,407,022, 2002.

  12. K.H. Sandhage and P. Kumar, Method for Fabricating Shaped Monolithic Ceramics and Ceramic Composites Through Displacive Compensation of Porosity, and Ceramics and Composites Made Thereby, U.S. Patent no. 6,833,337, 2004.

  13. J. Yang, J. Yu, and Y. Huang, Recent Developments in Gelcasting of Ceramics, J. Eur. Ceram. Soc., 2011, 31(14), p 2569–2591

    Article  Google Scholar 

  14. O.O. Omatete, M.A. Janney, and R.A. Strelow, Gelcasting—A New Ceramic Forming Process, Am. Ceram. Soc. Bull., 1991, 70(10), p 1641–1649

    Google Scholar 

  15. D.W. Lipke, Y. Zhang, Y. Liu, B.C. Church, and K.H. Sandhage, Near Net-Shape/Net-Dimension ZrC/W-Based Composites with Complex Geometries via Rapid Prototy** and Displacive Compensation of Porosity, J. Eur. Ceram. Soc., 2010, 30(11), p 2265–2277

    Article  Google Scholar 

  16. M. Adabi and A. Amadeh, Effect of Infiltration Parameters on Composition of W-ZrC Composites Produced by Displacive Compensation of Porosity (DCP) Method, Int. J. Refract. Met. Hard Mater., 2011, 29(1), p 31–37

    Article  Google Scholar 

  17. Y.W. Zhao, Y.J. Wang, Y. Zhou, and P. Shen, Reactive Wetting and Infiltration of Polycrystalline WC by Molten Zr2Cu Alloy, Scripta Mater., 2011, 64(3), p 229–232

    Article  Google Scholar 

  18. S. Zhang, S. Wang, W. Li, Y. Zhu, and Z. Chen, Microstructure and Properties of W-ZrC Composites Prepared by the Displacive Compensation of Porosity (DCP) Method, J. Alloys. Compd., 2011, 509(33), p 8327–8332

    Article  Google Scholar 

  19. Y.W. Zhao, Y.J. Wang, H.X. Peng, and Y. Zhou, Dense Sub-Micron-Sized ZrC-W Composite Produced by Reactive Melt Infiltration at 1200 °C, Int. J. Refract. Met. Hard Mater., 2012, 30(1), p 196–199

    Article  Google Scholar 

  20. A. Saarai, V. Kasparkovaa, T. Sedlaceka, and P. Sahaa, On the Development and Characterisation of Crosslinked Sodium Alginate/Gelatine Hydrogels, J. Mech. Behav. Biomed. Mater., 2013, 18, p 152–166

    Article  Google Scholar 

  21. Y. Li, H. Jia, Q. Cheng, F. Pan, and Z. Jiang, Sodium Alginate-Gelatin Polyelectrolyte Complex Membranes with Both High Water Vapor Permeance and High Permselectivity, J. Membr. Sci., 2011, 375(1–2), p 304–312

    Article  Google Scholar 

  22. H. Akhondi, E. Taheri-Nassaj, H. Sarpoolaky, and A. Taavoni-Gilan, Gelcasting of Alumina Nanopowders Based on Gelation of Sodium Alginate, Ceram. Int., 2009, 35(3), p 1033–1037

    Article  Google Scholar 

  23. M. Roosta and H.R. Baharvandi, The Comparison of W/Cu and W/ZrC Composites Fabricated Through Hot-Press, Int. J. Refract. Met. Hard Mater., 2010, 28(5), p 587–592

    Article  Google Scholar 

  24. M. Roosta, H.R. Baharvandi, and H. Abdizade, The Evaluation of W/ZrC Composite Fabricated Through Reaction Sintering of Two Precursors: Conventional ZrO2/WC and Novel ZrSiO4/WC, Int. J. Refract. Met. Hard Mater., 2011, 29(6), p 710–715

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Asghar Najafzadeh Khoee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafzadeh Khoee, A.A., Habibolahzadeh, A., Qods, F. et al. Microstructure and Properties of DCP-Derived W-ZrC Composite Using Nontoxic Sodium Alginate to Fabricate WC Preform. J. of Materi Eng and Perform 24, 1641–1648 (2015). https://doi.org/10.1007/s11665-015-1427-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1427-z

Keywords

Navigation