Log in

Effect of Magnesium Substitution on Electrochemical Performances of Layered LiNiO2 Cathode Materials

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ni-rich layered oxides are receiving increased attention as cathodes due to their high energy density. However, the gradual structural transformation during charging/discharging will lead to capacity degradation. The introduction of pillar elements into the Li slab is beneficial for the lattice stability and cycle performance. Herein, atomic configuration, electronic structure, and electrochemical redox behavior of a Mg-doped LiNiO2 cathode were studied. Analysis of the calculations shows that Mg do** can significantly improve the cycle performance and electronic conductivity, but suppresses the Li mobility to a certain extent in the cathode. The theoretical study gives an insight into the microscopic mechanism of Mg do** to improve the performance of Ni-rich cathode material, which is a necessary supplement to the experimental research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Manthiram, A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11, 1550 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. J.B. Goodenough and K.S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Q. Wang, Z. Yao, J. Wang, H. Guo, C. Li, D. Zhou, X. Bai, H. Li, B. Li, M. Wagemaker, and C. Zhao, Chemical short-range disorder in lithium oxide cathodes. Nature 629, 341 (2024).

    Article  CAS  PubMed  Google Scholar 

  4. G.T. Park, S.B. Kim, J.I. Yoon, N.Y. Park, M.C. Kim, S.M. Han, D.H. Kim, M.S. Kim, and Y.K. Sun, Unraveling the new role of manganese in nano and microstructural engineering of Ni-Rich layered cathode for advanced lithium-ion batteries. Adv. Energy Mater. 2400130, 1 (2024).

    Google Scholar 

  5. Q. Zhou, W. Liu, L. Lv, J. Zhu, Y. Dai, H. Li, and W. Hu, Study on d0 transition metals doped Ni-rich cathode materials for Li-ion batteries: insights from first-principles calculations. Colloids Surf. A 656, 130421 (2023).

    Article  CAS  Google Scholar 

  6. W.M. Seong and A. Manthiram, Complementary effects of Mg and Cu incorporation in stabilizing the cobalt-free LiNiO2 cathode for lithium-ion batteries. ACS Appl. Mater. Interfaces 12, 43653 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Q. **e, W. Li, and A. Manthiram, A Mg-doped high-nickel layered oxide cathode enabling safer, high-energy-density Li-ion batteries. Chem. Mater. 31, 938 (2019).

    Article  CAS  Google Scholar 

  8. X. Gao, Z. Li, H. Yan, D. Zhang, Y. Wang, and Y. Ha, Realizing excellent cycling stability of LiNi0.80Co0.15Al0.05O2 cathode at high cutoff voltage by Al(PO3)3 modification. J. Alloy. Compd. 932, 167637 (2023).

    Article  CAS  Google Scholar 

  9. H.S. Ko, J.H. Kim, J. Wang, and J.D. Lee, Co/Ti co-substituted layered LiNiO2 prepared using a concentration gradient method as an effective cathode material for Li-ion batteries. J. Power. Sources 372, 107 (2017).

    Article  CAS  Google Scholar 

  10. G.X. Huang, R.H. Wang, X.Y. Lv, J. Su, Y.F. Long, Z.Z. Qin, and Y.X. Wen, Effect of niobium do** on structural stability and electrochemical properties of LiNiO2 cathode for Li-ion batteries. J. Electrochem. Soc. 169, 040533 (2022).

    Article  CAS  Google Scholar 

  11. H.H. Ryu, G.T. Park, C.S. Yoon, and Y.K. Sun, Suppressing detrimental phase transitions via tungsten do** of LiNiO2 cathode for next-generation lithium-ion batteries. J. Mater. Chem. A 7, 18580 (2019).

    Article  CAS  Google Scholar 

  12. S. Zhang, X. Zhou, S. Li, Z. Feng, X. Fan, D. Sun, H. Wang, and Y. Tang, Construction of a nickel-rich LiNi0.83Co0.11Mn0.06O2 cathode with high stability and excellent cycle performance through interface engineering. Mater. Chem. Front. 7, 490 (2023).

    Article  CAS  Google Scholar 

  13. M.M.E. Cormier, N. Zhang, A. Liu, H. Li, J. Inglis, and J.R. Dahn, Impact of dopants (Al, Mg, Mn, Co) on the Reactivity of LixNiO2 with the electrolyte of Li-Ion batteries. J. Electrochem. Soc. 166, A2826 (2019).

    Article  CAS  Google Scholar 

  14. X. Dong, T. Chen, and G. Zhou, Design high performance field-effect, strain/gas sensors of novel 2D penta-like Pd2P2SeX (X = O, S, Te) pin-junction nanodevices: a study of transport properties. J. Alloy. Compd. 977, 173417 (2024).

    Article  CAS  Google Scholar 

  15. D. Qin, T. Chen, L. **e, N. Yang, C. Luo, and G. Zhou, Design and analysis of a 2D grapheneplus (G+)-based gas sensor for the detection of multiple organic gases. Phys. Chem. Chem. Phys. 25, 29315 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. A. Jain, G. Hautier, S.P. Ong, C.J. Moore, C.C. Fischer, K.A. Persson, and G. Ceder, Formation enthalpies by mixing GGA and GGA+U calculations. Phys. Rev. B 84, 045115 (2011).

    Article  Google Scholar 

  17. W. Hu, H. Kou, Y. Chen, Y. Wang, H. Zhu, G. Li, and H. Li, Unraveling the roles of Al, Mn and Co in the Ni-rich cathode material for Li-ion batteries. Colloids Surf. A 648, 129185 (2022).

    Article  CAS  Google Scholar 

  18. W. Hu, H.W. Wang, W.W. Luo, B. Xu, and C.Y. Ouyang, Formation and thermodynamic stability of oxygen vacancies in typical cathode materials for Li-ion batteries: density functional theory study. Solid State Ionics 347, 115257 (2020).

    Article  CAS  Google Scholar 

  19. G. Henkelman and H. Jónsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978 (2000).

    Article  CAS  Google Scholar 

  20. Y.H. Chen, J. Zhang, Y. Li, Y.F. Zhang, S.P. Huang, W. Lin, and W.K. Chen, Effects of do** high-valence transition metal (V, Nb and Zr) ions on the structure and electrochemical performance of LIB cathode material LiNi0.8Co0.1Mn0.1O2. Phys. Chem. Chem. Phys. 23, 11528 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Q. Zhou, H. Zhang, Z. Liu, L. Zeng, M. Sun, W. Hu, and H. Li, A first-principle study on the properties of Zr-doped Ni-rich cathode for Li-ion batteries. Ionics 29, 3537 (2023).

    Article  CAS  Google Scholar 

  22. A.K. Varanasi, A. Bhowmik, T. Sarkar, U.V. Waghmare, and M.D. Bharadwaj, Tuning electrochemical potential of LiCoO2 with cation substitution: first-principles predictions and electronic origin. Ionics 20, 315 (2013).

    Article  Google Scholar 

  23. S.Q. Shi, C.Y. Ouyang, M.S. Lei, and W.H. Tang, Effect of Mg-do** on the structural and electronic properties of LiCoO2: a first-principles investigation. J. Power. Sources 171, 908 (2007).

    Article  CAS  Google Scholar 

  24. W. Lin, Y. Ye, T. Chen, Y. Jiang, C. Ouyang, F. Pan, and J. Zheng, Defect-mediated Jahn–Teller effect in layered LiNiO2. Sci. China Mater. 65, 1696 (2022).

    Article  Google Scholar 

  25. L.L. Fang, M. Wang, Q.H. Zhou, H.H. Xu, W. Hu, and H.L. Li, Suppressing cation mixing and improving stability by F do** in cathode material LiNiO2 for Li-ion batteries: first-principles study. Colloids Surf. A 600, 124940 (2020).

    Article  CAS  Google Scholar 

  26. H. Yu, Y. Cao, L. Chen, Y. Hu, X. Duan, S. Dai, C. Li, and H. Jiang, Surface enrichment and diffusion enabling gradient-do** and coating of Ni-rich cathode toward Li-ion batteries. Nat. Commun. 12, 4564 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. V.V. Anisimov, J. Zaanen, and O.K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943 (1991).

    Article  CAS  Google Scholar 

  28. K. Min, S.W. Seo, Y.Y. Song, H.S. Lee, and E. Cho, A first-principles study of the preventive effects of Al and Mg do** on the degradation in LiNi0.8Co0.1Mn0.1O2 cathode materials. Phys. Chem. Chem. Phys. 19, 1762 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. D. Lu, R. Li, M.M. Rahman, P. Yu, L. Lv, S. Yang, Y. Huang, C. Sun, S. Zhang, H. Zhang, J. Zhang, X. **ao, T. Deng, L. Fan, L. Chen, J. Wang, E. Hu, C. Wang, and X. Fan, Ligand-channel-enabled ultrafast Li-ion conduction. Nature 627, 101 (2024).

    Article  CAS  PubMed  Google Scholar 

  30. Y. Chen, W. Hu, Q. Zhou, and H. Li, Conflicting roles of Na-doped layered cathode material LiCoO2 for Li-ion batteries. J. Solid State Electrochem. 25, 2565 (2021).

    Article  CAS  Google Scholar 

  31. Q. Tao, L. Wang, C. Shi, J. Li, G. Chen, Z. Xue, J. Wang, S. Wang, and H. **, Understanding the Ni-rich layered structure materials for high-energy density lithium-ion batteries. Mater. Chem. Front. 5, 2607 (2021).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Hu.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Wen, H., Zhang, H. et al. Effect of Magnesium Substitution on Electrochemical Performances of Layered LiNiO2 Cathode Materials. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-11272-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-024-11272-w

Keywords

Navigation