Log in

Enhanced Transport Parameters of Transition Metal Dichalcogenide-Based Double-Barrier Magnetic Tunnel Junction

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper theoretically examines the impact of integrating 2D transition metal dichalcogenide (TMDCs) materials—MoS2, MoSe2, MoTe2, WS2, and WSe2—with a conventional MgO dielectric to fabricate double-barrier penta-layer (DBPL) magnetic tunnel junction (MTJ) structures. The MTJ device proposed herein is distinguished by a DBPL configuration which incorporates the composite tunnel barrier (CTB) of MgO-MX2-MgO sandwiched between the Fe ferromagnetic electrodes. Using density functional theory (DFT), we conducted a crystallographic analysis on all constituent materials to predict the properties necessary for device operation. Subsequent simulations leveraged an advanced nonequilibrium Green’s function-based (NEGF) quantum transport simulator to quantify critical transport phenomena. Notable metrics such as tunneling magnetoresistance (TMR), differential TMR, and spin-transfer torque (STT), both in-plane and out-of-plane, were determined. Additionally, resistance and differential resistance profiles for parallel and antiparallel alignment states were thoroughly evaluated. Our findings elucidate the essential role of CTB composition in determining MTJ performance attributes, with particular dielectric pairings showing a significant enhancement in TMR ratios and an improved resistance differential without compromising the efficiency of STT. Interestingly, our proposed MTJ device shows a substantial increase in TMR values, ranging from 900% to 4300%, with very high sensitivity ranging from 7.33 × 106 T−1 to 3.36 × 107 T−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Introduction to Magnetic Materials | IEEE EBooks | IEEE Xplore, https://ieeexplore.ieee.org/book/7794169.

  2. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. Von Molnár, M.L. Roukes, A.Y. Chtchelkanova, and D.M. Treger, Spintronics: a spin-based electronics vision for the future. Science (80-) 294, 1488 (2001).

    Article  CAS  Google Scholar 

  3. J.G. (Jimmy) Zhu, and C. Park, Magnetic tunnel junctions. Mater. Today 9, 36 (2006).

    Article  Google Scholar 

  4. M. Julliere, Tunneling between Ferromagnetic Films. Phys. Lett. A 54, 225 (1975).

    Article  Google Scholar 

  5. T. Roy, M. Tsujikawa, and M. Shirai, IrCrMnZ (Z = Al, Ga, Si, Ge) heusler alloys as electrode materials for MgO-based magnetic tunneling junctions: a first-principles study. J. Phys. D Appl. Phys. 55, 125303 (2021).

    Article  Google Scholar 

  6. H.X. Wei, Q.H. Qin, M. Ma, R. Sharif, and X.F. Han, 80% Tunneling magnetoresistance at room temperature for thin Al-O barrier magnetic tunnel junction with CoFeB as free and reference layers. J. Appl. Phys. 101, 09B501 (2007).

    Article  Google Scholar 

  7. B. Pradines, L. Calmels, and R. Arras, Robustness of the half-metallicity at the interfaces in Co2MnSi-Based all-full-Heusler-alloy spintronic devices. Phys. Rev. Appl. 15, 034009 (2021).

    Article  CAS  Google Scholar 

  8. W.H. Butler, X. Zhang, and T.C. Schulthess, Spin-dependent tunneling conductance of Fe MgO Fe sandwiches. Phys. Rev. B 63, 1 (2001).

    Article  Google Scholar 

  9. S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3(12), 868 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. S. Ikeda, J. Hayakawa, Y. Ashizawa, Y.M. Lee, K. Miura, H. Hasegawa, M. Tsunoda, F. Matsukura, and H. Ohno, Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeBMgOCoFeB pseudo-spin-valves annealed at high temperature. Appl. Phys. Lett. 93, 082508 (2008).

    Article  Google Scholar 

  11. T. Scheike, Z. Wen, H. Sukegawa, and S. Mitani, 631% Room temperature tunnel magnetoresistance with large oscillation effect in CoFe/MgO/CoFe(001) junctions. Appl. Phys. Lett. 122, 112404 (2023).

    Article  CAS  Google Scholar 

  12. T. Miyazaki and N. Tezuka, Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 139, L231 (1995).

    Article  CAS  Google Scholar 

  13. Q.Y. Xu, H. Chen, J.M. Zhu, H. Sang, G. Ni, and Y.W. Du, Microstructure of Fe/Al2O3/Fe tunneling junction. J. Mater. Sci. Lett. 19, 867 (2000).

    Article  CAS  Google Scholar 

  14. D. Li, Large Magnetoresistance and efficient spin injection in ferromagnet/graphene/Fe3GeTe2Van Der Waals magnetic tunnel junctions. J. Phys. Chem. C 125, 16228 (2021).

    Article  CAS  Google Scholar 

  15. M. Piquemal-Banci et al., Spin filtering by proximity effects at hybridized interfaces in spin-valves with 2D graphene barriers. Nat. Commun. 11, 5670 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. W. Qiu, J. Peng, M. Pan, Y. Hu, M. Ji, J. Hu, W. Tian, D. Chen, Q. Zhang, and P. Li, Spin-dependent resonant tunneling and magnetoresistance in Ni/Graphene/h-BN/Graphene/Ni van Der Waals heterostructures. J. Magn. Magn. Mater. 476, 622 (2019).

    Article  CAS  Google Scholar 

  17. Z. Yan, X. Jia, X. Shi, X. Dong, and X. Xu, Barrier-dependent electronic transport properties in two-dimensional MnBi2Te4-based van der Waals magnetic tunnel junctions. Appl. Phys. Lett. 118, 223503 (2021).

    Article  CAS  Google Scholar 

  18. K. Dolui, A. Narayan, I. Rungger, and S. Sanvito, Efficient spin injection and giant magnetoresistance in Fe/MoS2/Fe junctions. Phys. Rev. B Condens. Matter Mater. Phys. 90, 041401 (2014).

    Article  CAS  Google Scholar 

  19. K. Tarawneh, N. Al-Aqtash, and R. Sabirianov, Large magnetoresistance in planar Fe/MoS2/Fe tunnel junction. Comput. Mater. Sci. 124, 15 (2016).

    Article  CAS  Google Scholar 

  20. N. Devaraj and K. Tarafder, Large magnetoresistance in a Co/Mo S2/Graphene/Mo S2/Co magnetic tunnel junction. Phys. Rev. B 103, 165407 (2021).

    Article  CAS  Google Scholar 

  21. P. Kumar, A. Kumar, and D. Kaur, Spin valve effect in sputtered FL-MoS2 and ferromagnetic shape memory alloy based magnetic tunnel junction. Ceram. Int. 47, 4587 (2021).

    Article  CAS  Google Scholar 

  22. C. Tan and H. Zhang, Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 44, 2713 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. X. Wu, R. Ge, D. Akinwande, J.C. Lee, Memristors Based on 2D Monolayer Materials, Vol. 11 (Intechopen, 2021)

  24. C. Zhao, J. Ou, Z. Wen, and W. Lu, Electrically controlled positive and negative magnetoresistance in ferromagnetic WSe2 junction. Phys. Lett. A 452, 128443 (2022).

    Article  CAS  Google Scholar 

  25. Q. Lu, C.B. Wang, and W.J. Gong, Transport properties of As-F-based molecular magnetic tunnel junctions. Phys. Lett. A 457, 128570 (2023).

    Article  CAS  Google Scholar 

  26. H. Li, J.K. Huang, Y. Shi, and L.J. Li, Toward the growth of high mobility 2D transition metal dichalcogenide semiconductors. Adv. Mater. Interfaces 6, 1 (2019).

    Article  Google Scholar 

  27. S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, and A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2(8), 1–15 (2017).

    Article  Google Scholar 

  28. W. Zhu, T. Low, H. Wang, P. Ye, and X. Duan, Nanoscale electronic devices based on transition metal dichalcogenides. 2D Mater. 6, 032004 (2019).

    Article  CAS  Google Scholar 

  29. X. Li, S. Zhang, and Q. Wang, Topological insulating states in 2D transition metal dichalcogenides induced by defects and strain. Nanoscale 9, 562 (2017).

    Article  PubMed  Google Scholar 

  30. S.N. Upadhyay, J.A.K. Satrughna, and S. Pakhira, Recent advancements of two-dimensional transition metal dichalcogenides and their applications in electrocatalysis and energy storage. Emerg. Mater. 4, 951 (2021).

    Article  CAS  Google Scholar 

  31. W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande, and Y.H. Lee, Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20, 116 (2017).

    Article  CAS  Google Scholar 

  32. H. Wang, H. Yuan, S. Sae Hong, Y. Li, and Y. Cui, Physical and Chemical Tuning of Two-Dimensional Transition Metal Dichalcogenides. Chem. Soc. Rev. 44, 2664 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Z. Li, and S.L. Wong, Functionalization of 2D transition metal dichalcogenides for biomedical applications. Mater. Sci. Eng. C 70, 1095–1106 (2017).

    Article  CAS  Google Scholar 

  34. E. Lee, Y.S. Yoon, and D.J. Kim, Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing. ACS Sens. 3, 2045 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. S. Ganguly, D. Datta, C. Shang, S. Ramadas, S. Salahuddin, S. Datta, Magnetic Tunnel Junction Lab, https://nanohub.org/resources/mtjlab. https://doi.org/10.4231/D30Z70X0J (2014)

  36. H. Kubota et al., Quantitative measurement of voltage dependence of spin-transfer torque in MgO-based magnetic tunnel junctions. Nat. Phys. 4, 37 (2008).

    Article  CAS  Google Scholar 

  37. D. Datta, B. Behin-Aein, S. Datta, and S. Salahuddin, Voltage asymmetry of spin-transfer torques. IEEE Trans. Nanotechnol. 11, 261 (2012).

    Article  Google Scholar 

  38. J.F. Sierra, J. Fabian, R.K. Kawakami, S. Roche, and S.O. Valenzuela, Van Der Waals heterostructures for spintronics and opto-spintronics. Nat. Nanotechnol. 16, 856 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. F. Gete and M. Fe, Voltage tunable sign inversion of magnetoresistance in van Der Waals (n.d.).

  40. J. Igarashi, B. **nai, K. Watanabe, T. Shinoda, T. Funatsu, H. Sato, S. Fukami, and H. Ohno, Single-nanometer CoFeB/MgO magnetic tunnel junctions with high-retention and high-speed capabilities. NPJ Spintron. 2, 1 (2024).

    Article  Google Scholar 

  41. Y. Shi, H. Zhang, W.H. Chang, H.S. Shin, and L.J. Li, Synthesis and structure of two-dimensional transition-metal dichalcogenides. MRS Bull. 40, 566 (2015).

    Article  CAS  Google Scholar 

  42. Y. Liu, Y. Huang, and X. Duan, Van Der Waals integration before and beyond two-dimensional materials. Nature 567, 323 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. P. Giannozzi et al., Quantum ESPRESSO toward the exascale. J. Chem. Phys. 152, 154105 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. S. Datta, Quantum Transport: Atom to Transistor, Vol. 9780521631 (2005)

  45. A.A. Yanik, G. Klimeck, and S. Datta, Quantum transport with spin dephasing: a nonequlibrium Green’s function approach. Phys. Rev. B 76, 045213 (2007).

    Article  Google Scholar 

  46. S. Datta, Nanoscale device modeling: the Green’s function method. Superlattices Microstruct. 28, 253 (2000).

    Article  CAS  Google Scholar 

  47. S. Datta, Electronic Transport in Mesoscopic Systems, Electron. Transp. Mesoscopic Syst. (1995).

  48. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. H.T. Stokes, and D.M. Hatch, FINDSYM: program for identifying the space-group symmetry of a crystal. J. Appl. Crystallogr. 38, 237 (2005).

    Article  CAS  Google Scholar 

  50. K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  PubMed  Google Scholar 

  51. A. Kumara, and P.K. Ahluwalia, Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: new direct band gap semiconductors. Eur. Phys. J. B 85, 1–7 (2012).

    Google Scholar 

  52. S.W. Han et al., Band-Gap Transition Induced by Interlayer van Der Waals Interaction in MoS2. Phys. Rev. B Condens. Matter Mater. Phys. 84, 045409 (2011).

    Article  Google Scholar 

  53. W.S. Yun, S.W. Han, S.C. Hong, I.G. Kim, and J.D. Lee, Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX 2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 85, 033305 (2012).

    Article  Google Scholar 

  54. T.C. Choy, Effective medium theory: principles and applications. Eff. Mediu. Theory (2015)

  55. R. Sinha, and J. Kaur, Analyzing the impact of different composite dielectrics on performance parameters of a magnetic tunnel junction memory device. J. Electron. Mater. 51, 5686 (2022).

    Article  CAS  Google Scholar 

  56. S. Liang, R. Geng, B. Yang, W. Zhao, R. Chandra Subedi, X. Li, X. Han, and T.D. Nguyen, Curvature-enhanced spin-orbit coupling and spinterface effect in fullerene-based spin valves. Sci. Rep. 6, 1 (2016).

    CAS  Google Scholar 

  57. F. Wang, and Z.V. Vardeny, Organic spin valves: the first organic spintronics devices. J. Mater. Chem. 19, 1685 (2009).

    Article  CAS  Google Scholar 

  58. D. Deb, D. Nath, R.J. Choudhary, J.N. Roy, and P. Dey, Magneto-tunable photoresponse in ZnO-RGO/La0.7Sr0.3MnO3/ITO heterostructure: an opto-spintronic phenomenon. Phys. Lett. A 446, 128271 (2022).

    Article  CAS  Google Scholar 

  59. B. Sharma, A. Mukhopadhyay, L. Banerjee, A. Sengupta, H. Rahaman, and C.K. Sarkar, Ab initio study of mono-layer 2-D insulators (X-(OH)2 and h-BN) and their use in MTJ memory device. Microsyst. Technol. 25, 1909 (2019).

    Article  CAS  Google Scholar 

  60. M. Saleem, M. Shakil, B. Waseem, M. Zafar, M.S. Al-Buriahi, F.M.A. Alzahrani, I. Kebaili, and Z.A. Alrowaili, Density functional study of electrode material for magnetic tunnel junction designed using Co2TiZ (Z = Ge, Si) heusler alloys. J. Phys. Chem. Solids 187, 111868 (2024).

    Article  CAS  Google Scholar 

  61. M. Saleem, and M. Shakil, Determination of Tunnelling Magneto Resistance of Magnetic Tunnel Junction Designed Using Co2TiAl Heusler Alloy with MgO Spacer Layer. Phys. B Condens. Matter 649, 414458 (2023).

    Article  CAS  Google Scholar 

  62. W. Rotjanapittayakul, W. Pijitrojana, T. Archer, S. Sanvito, and J. Prasongkit, Spin injection and magnetoresistance in MoS2-based tunnel junctions using Fe3Si Heusler alloy electrodes. Sci. Rep. 8, 4779 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. J. Zhou, J. Qiao, C.G. Duan, A. Bournel, K.L. Wang, and W. Zhao, Large tunneling magnetoresistance in VSe 2 /MoS 2 magnetic tunnel junction. ACS Appl. Mater. Interfaces 11, 17647 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Q. Zhang, K.S. Chan, and J. Li, Spin-transfer torque generated in graphene based topological insulator heterostructures. Sci. Rep. 8, 1 (2018).

    Google Scholar 

  65. P.P. Sharma et al., Integrated platform for detecting pathogenic DNA via magnetic tunneling junction-based biosensors. Sens. Actuators B Chem 242, 280 (2017).

    Article  CAS  Google Scholar 

  66. D. Su, K. Wu, R. Saha, C. Peng, and J.P. Wang, Advances in magnetoresistive biosensors. Micromachines 11, 34 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. M. Wang, Y. Wang, L. Peng, and C. Ye, Measurement of triaxial magnetocardiography using high sensitivity tunnel magnetoresistance sensor. IEEE Sens. J. 19, 9610 (2019).

    Article  CAS  Google Scholar 

  68. K. Fujiwara et al., Magnetocardiography and magnetoencephalography measurements at room temperature using tunnel magneto-resistance sensors. Appl. Phys. Express 11, 023001 (2018).

    Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reshma Sinha.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, R., Kaur, J. Enhanced Transport Parameters of Transition Metal Dichalcogenide-Based Double-Barrier Magnetic Tunnel Junction. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-11267-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-024-11267-7

Keywords

Navigation