Log in

Harnessing Energy Through ZnO-Based Triboelectric Nanogenerator: A Comparative Analysis of Polymer Materials, with Emphasis on PVDF Nanofibers

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Triboelectric nanogenerators (TENG), which efficiently capture and convert mechanical energy, offer an innovative solution for develo** green energy sources. In this work, we developed a zinc oxide (ZnO)-based TENG for use in vertical contact-separation mode by combining it with several polymers (polytetrafluoroethylene [PTFE], fluorinated ethylene propylene [FEP], polydimethylsiloxane [PDMS], polyethylene terephthalate [PET], polyethylene naphthalate [PEN], polyvinylidene difluoride [PVDF]) and mica. Radio-frequency (RF) magnetron sputtering was used to fabricate ZnO thin films with higher optical transmission and c-axis orientation. When combined with mica and PEN, ZnO behaves as a negative tribo layer, while when combined with the other polymers, it behaves as a positive tribo layer. ZnO with PVDF nanofibers generated maximum output, with an open-circuit voltage of 42 V. To determine the maximum power density and energy storage performance, the ZnO-PVDF TENG response was examined under various load conditions of resistance and capacitance. The power density was calculated using this device and found to be 62 µW/cm2. Furthermore, the manufactured TENG was demonstrated to power a digital watch and LEDs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F.R. Fan, Z.Q. Tian, and Z. Lin Wang, Flexible triboelectric generator. Nano Energy 1, 334 (2012).

    Article  Google Scholar 

  2. S. Wang, L. Lin, and Z.L. Wang, Nanoscale-triboelectric-effect enabled energy conversion for sustainable powering of portable electronics. Nano Lett. 12, 6346 (2012).

    Article  Google Scholar 

  3. D. Li, C. Wu, L. Ruan, J. Wang, Z. Qiu, K. Wang, Y. Liu, Y. Zhang, T. Guo, J. Lin, and T.W. Kim, Electron-transfer mechanisms for confirmation of contact-electrification in ZnO/polyimide-based triboelectric nanogenerators. Nano Energy 75, 104818 (2020).

    Article  CAS  Google Scholar 

  4. D. Godwinraj, and S.C. George, Recent advancement in TENG polymer structures and energy efficient charge control circuits. J. Adv. Ind. Eng. Polym. Res. 4, 8 (2021).

    Google Scholar 

  5. J. Bang, I.K. Moon, Y.P. Jeon, B. Ki, and J. Oh, Fully wood-based green triboelectric nanogenerators. Appl. Surf. Sci. 567, 150806 (2021).

    Article  CAS  Google Scholar 

  6. C.S. Wu, A.C. Wang, W.B. Ding, H.Y. Guo, and Z.L. Wang, Triboelectric nanogenerators: a foundation of the energy for the new era. Adv. Energy Mater. 9, 1802906 (2019).

    Article  Google Scholar 

  7. S. Kim, M.K. Gupta, K.Y. Lee, A. Sohn, T.Y. Kim, K.S. Shin, D. Kim, S.K. Kim, K.H. Lee, and H.J. Shin, Transparent flexible graphene triboelectric nanogenerators. Adv. Mater. 26, 3925 (2014).

    Article  Google Scholar 

  8. A. Chen, C. Zhang, G. Zhu, and Z.L. Wang, Polymer materials for high-performance triboelectric nanogenerator. Adv. Sci. 7, 2000186 (2020).

    Article  CAS  Google Scholar 

  9. P. Supraja, R.R. Kumar, S. Mishra, D. Haranath, P.R. Sankar, K. Prakash, N. Jayarambabu, T. Venkatappa Rao, and K.U. Kumar, A simple and low-cost triboelectric nanogenerator based on two dimensional ZnO nanosheets and its application in portable electronics. Sens. Actuators A Phys. 335, 113368 (2022).

    Article  CAS  Google Scholar 

  10. Y.P. Jeon, C. Wu, K.H. Yoo, and T.W. Kim, Enhancement of the output voltage for triboelectric nanogenerators due to Al do** in the zinc oxide layer. J. Alloys Compd. 831, 154913 (2020).

    Article  CAS  Google Scholar 

  11. Y.P. Jeon, J.H. Park, and T.W. Kim, Highly-enhanced triboelectric nanogenerators based on zinc-oxide nanoripples acting as a triboelectric layer. Appl. Surf. Sci. 445, 55 (2018).

    Article  Google Scholar 

  12. R.S. Ajimsha, A. Mahapatra, A.K. Das, V.K. Sahu, and P. Misra, High output power density owing to enhanced charge transfer in ZnO-based triboelectric nanogenerator. Energy 263, 125646 (2023).

    Article  CAS  Google Scholar 

  13. S.N. Chen, C.H. Chen, Z.H. Lin, Y.H. Tsao, and C.P. Liu, On enhancing the capability of tribo charge transfer of ZnO nanorod arrays by Sb do** for anomalous output performance improvement of triboelectric nanogenerators. Nano Energy 45, 318 (2018).

    Article  Google Scholar 

  14. Y.H. Ko, G. Nagaraju, S.H. Lee, and J.S. Yu, PDMS-based triboelectric and transparent nanogenerators with ZnO nanorod arrays. ACS Appl. Mater. Interfaces 6, 6637 (2014).

    Article  Google Scholar 

  15. X. Yue, Y. **, C. Hu, X. He, S. Dai, L. Cheng, and G. Wang, Enhanced output-power of nanogenerator by modifying PDMS film with lateral ZnO nanotubes and Ag nanowires. RSC Adv. 5, 32571 (2015).

    Article  Google Scholar 

  16. W. Deng, B. Zhang, L. **, Y. Chen, W. Chu, H. Zhang, M. Zhu, and W. Yang, Enhanced performance of ZnO micro balloon arrays for a triboelectric nanogenerator. Nanotechnology 28, 135401 (2017).

    Article  PubMed  Google Scholar 

  17. J. Lee, J. Kim, H. Kim, Y.M. Bae, K.H. Lee, and H.J. Cho, Effect of thermal treatment on the chemical resistance of polydimethylsiloxane for microfluidic devices. J. Micromech. Microeng. 23, 035007 (2013).

    Article  Google Scholar 

  18. J.A.G. Caderon, D.C. Lopez, E. Perez, and J.V. Montesinos, Polysiloxanes as polymer matrices in biomedical engineering: their interesting properties as the reason for the use in medical sciences. Polym. Bull. 77, 2817 (2020).

    Google Scholar 

  19. L.K. Anlin, K.V. Vijoy, K. Pradeesh, S. Thomas, H. John, and K.J. Saji, Effects of metal nanoparticles on the performance of PDMS based triboelectric nanogenerators. Phys. B: Condens. Matter. 639, 413952 (2022).

    Article  CAS  Google Scholar 

  20. J. Piwowarczyk, R. Jedrzejewski, D. Moszynski, K. Kwiatkowski, A. Niemczyk, and J. Baranowska, XPS and FTIR studies of polytetrafluoroethylene thin films obtained by physical methods. Polymers 11, 1629 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. R.M.A. Majeed, V.S. Purohit, S.V. Bhoraskar, A.B. Mandale, and V.N. Bhoraskar, Irradiation effects of 12 eV oxygen ions on polyimide and fluorinated ethylene propylene. Radiat. Eff. Defects Solids 161, 503 (2006).

    Google Scholar 

  22. J.P. Lee, J.W. Lee, and J.M. Baik, The progress of PVDF as a functional material for triboelectric nanogenerators and self-powered sensors. Micromachines 10, 532 (2018).

    Article  Google Scholar 

  23. N. Soin, P. Zhao, K. Prashanthi, J. Chen, P. Ding, E. Zhou, T. Shah, S.C. Ray, C. Tsonos, T. Thundat, E. Siores, and J. Luo, High-performance triboelectric nanogenerators based on phase-inversion piezoelectric membranes of poly(vinylidene fluoride)-zinc stannate (PVDFZnSnO3) and polyamide-6 (PA6). Nano Energy 30, 480 (2016).

    Article  Google Scholar 

  24. L. Ruan, X. Yao, Y. Chang, L. Zhou, G. Qin, and X. Zhang, Properties and applications of the β phase poly(vinylidene fluoride). Polymers 10, 228 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. A. Salimi and A.A. Yousefi, Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polym. Test. 22, 704 (2003).

    Article  Google Scholar 

  26. B. Sun, X. Li, R. Zhao, H. Ji, J. Qiu, N. Zhang, D. He, and C. Wang, Electrospun poly vinylidene fluoride-zinc oxide hierarchical composite fiber membrane as piezoelectric acoustoelectric nanogenerator. J. Mater. Sci. 54, 2754 (2019).

    Article  CAS  Google Scholar 

  27. H.H. Singh and N. Khare, Flexible ZnOPVDF/PTFE based piezo tribo hybrid nanogenerator. Nano Energy 51, 222 (2018).

    Article  Google Scholar 

  28. A.E. Tonelli, PET versus PEN, What difference can a ring make. Polymers 43, 642 (2002).

    Google Scholar 

  29. A.A. El-saftawy, M.S. Ragheb, A. Elfalaky, and S.G. Zakhary, Electron beam induced surface modification of PET film. Radiat. Phys. Chem. 102, 102 (2014).

    Article  Google Scholar 

  30. S. Kim, M.K. Gupta, K.Y. Lee, A. Sohn, T.Y. Kim, K.S. Shin, D. Kim, S.K. Kim, K.H. Lee, H.J. Shin, D.W. Kim, and S.W. Kim, Transparent flexible graphene triboelectric nanogenerators. Adv. Mater. 26, 3925 (2014).

    Article  Google Scholar 

  31. S. Ebnesajjad, Introduction to fluoropolymers: materials, technology, and applications (Waltham: William Andrews is an Imprint of Elsevier, 2013).

    Google Scholar 

  32. S. Niu and Z.L. Wang, Theoretical systems of triboelectric nanogenerators. Nano Energy 14, 192 (2015).

    Article  Google Scholar 

  33. C. Fang, T. Tong, T. Bu, Y. Cao, S. Xu, Y. Qi, and C. Zhang, Overview of power management for triboelectric nanogenerators. Adv. Intell. Syst. 2, 1900129 (2020).

    Article  Google Scholar 

  34. K.V. Vijoy, H. John, and K.J. Saji, Self-powered ultra-sensitive millijoule impact sensor using room temperature cured PDMS based triboelectric nanogenerator. Microelectron. Eng. 251, 111664 (2022).

    Article  CAS  Google Scholar 

  35. S. Niu, Y. Liu, Y.S. Zhou, S. Wang, L. Lin, and Z.L. Wang, Optimization of triboelectric nanogenerator charging systems for efficient energy harvesting and storage. IEEE Trans. Electron. Devices 62, 647 (2015).

    Google Scholar 

  36. Y. Yao, T. Jiang, L. Zhang, X. Chen, Z. Gao, and Z.L. Wang, Charging system optimization of triboelectric nanogenerator for water wave energy harvesting and storage. ACS Appl. Mater. Interfaces 8, 21406 (2016).

    Article  Google Scholar 

Download references

Acknowledgments

P. Hajara is grateful for the NREF fellowship received from the Ministry of New and Renewable Energy (MNRE). M. R. Shijeesh expresses gratitude to the Kerala State Higher Education Council (KSHEC), for the CMNPDF grant. The authors would like to thank the Kerala government for supporting us financially through the PLEASE project. We also thank DST-PURSE for financial support in investing in the RF magnetron sputtering apparatus. We also acknowledge the Department of Physics, CUSAT for providing FESEM facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. J. Saji.

Ethics declarations

Conflict of interest

We have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 390 KB)

Supplementary file2 (MP4 3874 KB)

Supplementary file3 (MP4 3261 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajara, P., Shijeesh, M.R., Vijoy, K.V. et al. Harnessing Energy Through ZnO-Based Triboelectric Nanogenerator: A Comparative Analysis of Polymer Materials, with Emphasis on PVDF Nanofibers. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-11223-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-024-11223-5

Keywords

Navigation