Log in

Tuning Electrical Properties and Achieving High TCR in P-Doped a-SixC1−x:H Films

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, the characteristics of phosphorus-doped hydrogenated amorphous silicon carbide prepared by radio-frequency glow discharge decomposition of a mixture of silane (SiH4), methane (CH4) and hydrogen (H2) were investigated. Molecular vibration, surface morphology, dark electrical conductivity, and activation energy were analyzed. The gas phase composition of CH4 was varied in the range of 0.40–0.95 relative to SiH4, while the molar fraction of phosphine (PH3) in the gas phase was adjusted from 2.75% to 10%. It was observed that the molar fraction of carbon (C) in the film affects its homogeneity, resulting in the formation of regions rich in silicon (Si) and amorphous silicon carbide (a-SixC1−x), as well as the formation of nc-Si clusters, leading to lower surface roughness. The variation in electrical properties concerning do** and the molar fraction of carbon is consistently explained in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

  1. A. Bolz, M. Amon, C. Ozbek, B. Heublein, and M. Schaldach, Coating of cardiovascular stents with a semiconductor to improve their hemocompatibility. Tex. Heart I. J. 23(2), 162–166 (1996).

    CAS  Google Scholar 

  2. W. Daves, A. Krauss, N. Behnel, V. Häublein, A. Bauer, and L. Frey, Amorphous silicon carbide thin films (a-SiC: H) deposited by plasma-enhanced chemical vapor deposition as protective coatings for harsh environment applications. Thin Solid Films 519, 5892–5898 (2011).

    Article  Google Scholar 

  3. P. Louro, M. Vieira, M.A. Vieira, M. Fernandes, and J. Costa, Use of a-SiC: H photodiodes in optical communications applications. Adv. Photodiod. 10, 14048 (2011).

    Google Scholar 

  4. M.N.P. Carreño and A.T. Lopes, Self-sustained bridges of a-SiC: H films obtained by PECVD at low temperatures for MEMS applications. J. Non-Crys. Solids 338, 490–495 (2004).

    Article  Google Scholar 

  5. F. Giorgis, F. Giuliani, C.F. Pirri, E. Tresso, J.P. Conde, and V. Chu, Wide band gap a-SiC: H films for optoelectronic applications. J. Non-Crys. Solids 227, 465–469 (1998).

    Article  Google Scholar 

  6. S. Janz, S. Riepe, M. Hofmann, S. Reber, and S. Glunz, Phosphorus-doped SiC as an excellent p-type Si surface passivation layer. Appl. Phys. Lett. 88, 133516 (2006).

    Article  Google Scholar 

  7. C. Summonte, R. Rizzoli, M. Bianconi, A. Desalvo, D. Iencinella, and F. Giorgis, Wide band-gap silicon-carbon alloys deposited by very high frequency plasma enhanced chemical vapor deposition. J. Appl. Phys. 96, 3987–3997 (2004).

    Article  CAS  Google Scholar 

  8. S. Janz, S. Reber, F. Lutz, and C. Schetter, Conductive SiC as an intermediate layer for CSITF solar cells. Thin Solid Films 511, 271–274 (2006).

    Article  Google Scholar 

  9. A. Madan and M.P. Shaw, The Physics and Applications of Amorphous Semiconductors (Academic Press, 2012).

    Google Scholar 

  10. C. Iliescu, B. Chen, D.P. Poenar, and Y.Y. Lee, PECVD amorphous silicon carbide membranes for cell culturing. Sensor Actuat. B-Chem. 129, 404–411 (2008).

    Article  CAS  Google Scholar 

  11. L. Martinu and D. Poitras, Review: Plasma deposition of optical films and coatings: A review. J. Vac. Sci. Technol. A 18, 2619–2645 (2000).

    Article  CAS  Google Scholar 

  12. J.L. He, M.H. Hon, and L.C. Chang, Properties of amorphous silicon carbide film deposited by PECVD on glass. Mater. Chem. Phys. 45, 43–49 (1996).

    Article  CAS  Google Scholar 

  13. C.K. Jung, D.C. Lim, H.G. Jee, M.G. Park, S.J. Ku, K.S. Yu, B. Hong, S.B. Lee, and J.H. Boo, Hydrogenated amorphous and crystalline SiC thin films grown by RF-PECVD and thermal MOCVD; comparative study of structural and optical properties. Surf. Coat. Technol. 171, 46–50 (2003).

    Article  CAS  Google Scholar 

  14. R. Cheung, Silicon Carbide Microelectromechanical Systems for Harsh Environments (Edinburgh, UK: Imperial College Press, 2006).

    Book  Google Scholar 

  15. H.B. Shin, J.D. Saint, M.Y. Lee, N.J. Podraza, and T.N. Jackson, Electrical properties of plasma enhanced chemical vapor deposition a-Si: H and a-Si1−xCx: H for microbolometer applications. J. Appl. Phys. 114, 183705 (2013).

    Article  Google Scholar 

  16. T. Dinh, D.V. Dao, H.P. Phan, L. Wang, A. Qamar, N.T. Nguyen, P. Tanner, and M. Rybachuk, Charge transport and activation energy of amorphous silicon carbide thin film on quartz at elevated temperature. Appl. Phys. Express 8, 061303 (2015).

    Article  Google Scholar 

  17. M.A. Fraga, Comparison between the piezoresistive properties of a-SiC films obtained by PECVD and magnetron sputtering. Mater. Sci. Forum 679, 217–220 (2011).

    Article  Google Scholar 

  18. F. Demichelis, C.F. Pirri, and E. Tresso, Influence of do** on the structural and optoelectronic properties of amorphous and microcrystalline silicon carbide. J. Appl. Phys. 72, 1327–1333 (1992).

    Article  CAS  Google Scholar 

  19. G. Morell, R.S. Katiyar, S.Z. Weisz, and I. Balberg, Characterization of the silicon network disorder in hydrogenated amorphous silicon carbide alloys with low carbon concentrations. J. Non-Crys. Solids 194, 78–84 (1996).

    Article  CAS  Google Scholar 

  20. T. Chen, F. Köhler, A. Heidt, Y. Huang, F. Finger, and R. Carius, Microstructure and electronic properties of microcrystalline silicon carbide thin films prepared by hot-wire CVD. Thin Solid Films 519, 4511–4515 (2011).

    Article  CAS  Google Scholar 

  21. W. Yu, W. Lu, L. Han, and G. Fu, Structural and optical properties of hydrogenated amorphous silicon carbide films by helicon wave plasma-enhanced chemical vapour deposition. J. Phys. D Appl. Phys. 37, 3304 (2004).

    Article  CAS  Google Scholar 

  22. D. Das and M. Jana, Hydrogen plasma induced microcrystallization in layer-by-layer growth scheme. Sol. Energy Mater. Sol. Cells 81, 169–181 (2004).

    Article  CAS  Google Scholar 

  23. S. Janz, Amorphous silicon carbide for photovoltaic applications. 2006. Doctoral thesis.

  24. M. M. Kamble, V. S. Waman, A. H. Mayabadi, S. S. Ghosh, B. B. Gabhale, S. R. Rondiya, A. V. Rokade, S. S. Khadtare, V. G. Sathe, T. Shripathi, H. M. Pathan, and S. W. Gosavi, Hydrogenated silicon carbide thin films prepared with high deposition rate by hot wire chemical vapor deposition method. J. Coatings 2014 (2014).

  25. F. Shariatmadar Tehrani, B.T. Goh, M.R. Muhamad, and S.A. Rahman, Pressure dependent structural and optical properties of silicon carbide thin films deposited by hot wire chemical vapor deposition from pure silane and methane gases. J. Mater. Sci-Mater. El. 24, 1361–1368 (2013).

    Article  CAS  Google Scholar 

  26. M.P. Delplancke, J.M. Powers, G.J. Vandentop, M. Salmeron, and G.A. Somorjai, Preparation and characterization of amorphous SiC: H thin films. J. Vac. Sci. Technol. A 9, 450–455 (1991).

    Article  CAS  Google Scholar 

  27. D.F. Valencia-Grisales and C. Reyes-Betanzo, Study of the annealing effect in optical properties for phosphorus-doped a-SixC1− x: H films deposited by PECVD. J. Phys. D Appl. Phys. 56, 395105 (2023).

    Article  Google Scholar 

  28. W. Wu, D.H. Chen, W.Y. Cheung, J.B. Xu, S.P. Wong, R.W.M. Kwok, and I.H. Wilson, Crystallization of ion-beam-synthesized SiC layer by thermal annealing. Appl. Phys. A 66, S539–S543 (1998).

    Article  CAS  Google Scholar 

  29. L. Magafas, D. Bandekas, A.K. Boglou, and A.N. Anagnostopoloulos, Electrical properties of annealed a-SiC: H thin films. J. Non-Crys. Solids 353, 1065–1069 (2007).

    Article  CAS  Google Scholar 

  30. R. Kubo, Statistical-mechanical theory of irreversible processes: I: General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12, 570–586 (1957).

    Article  Google Scholar 

  31. D.A. Greenwood, The Boltzmann equation in the theory of electrical conduction in metals. Proc. Phys. Soc. 71, 585 (1958).

    Article  CAS  Google Scholar 

  32. H.K. Tsai, W.L. Lin, W.J. Sah, and S.C. Lee, The characteristics of amorphous silicon carbide hydrogen alloy. J. Appl. Phys. 64, 1910–1915 (1988).

    Article  CAS  Google Scholar 

  33. A.R. Oliveira and M.N.P. Carreño, N and p-type do** of PECVD a-SiC: H obtained under “silane starving plasma” condition with and without hydrogen dilution. Mater. Sci. Eng. B 128, 44–49 (2006).

    Article  CAS  Google Scholar 

  34. S.F. Yoon, R. Ji, J. Ahn, and W.I. Milne, Microwave power effects on the properties of phosphorus-doped SiC: H films prepared using ECR-CVD. Diamond Relat. Mater. 6, 48–54 (1997).

    Article  CAS  Google Scholar 

  35. W. Beyer, H. Wagner, and H. Mell, Bonding and Release of Hydrogen in a-Si: C: H Alloys. MRS Online Proc. Lib. (OPL) 49, 189 (1985).

    Article  CAS  Google Scholar 

  36. A.H. Mahan, P. Raboisson, and R. Tsu, Influence of microstructure on the photoconductivity of glow discharge deposited amorphous SiC: H and amorphous SiGe: H alloys. Appl. Phys. Lett. 50, 335–337 (1987).

    Article  CAS  Google Scholar 

  37. H.K. Lee, S.Y. Myong, K.S. Lim, and E. Yoon, Electrical properties of photo-CVD boron-doped hydrogenated nanocrystalline silicon-carbide (p-nc-SiC: H) films for uncooled IR bolometer applications. J. Non-Crys. Solids 316, 297–301 (2003).

    Article  CAS  Google Scholar 

  38. J. Zhang, R.T. Howe, and R. Maboudian, Electrical characterization of n-type polycrystalline 3C-silicon carbide thin films deposited by 1, 3-disilabutane. J. Electrochem. Soc. 153, G548 (2006).

    Article  CAS  Google Scholar 

  39. M.A. Fraga, M. Massi, H. Furlan, I.C. Oliveira, L.A. Rasia, and C.F.R. Mateus, Preliminary evaluation of the influence of the temperature on the performance of a piezoresistive pressure sensor based on a-SiC film. Microsyst. Technol. 17, 477–480 (2011).

    Article  CAS  Google Scholar 

  40. F. Keplinger, J. Kuntner, A. Jachimowicz, and F. Kohl, Sensitive measurement of flow velocity and flow direction using a circular thermistor array. In Proc. GMe Workshop 133-137 (2006).

  41. J. Robadey, O. Paul, and H. Baltes, Two-dimensional integrated gas flow sensors by CMOS IC technology. J. Micromech. Microeng. 5, 243 (1995).

    Article  CAS  Google Scholar 

  42. J.G. Lee, M.I. Lei, S.P. Lee, S. Rajgopal, and M. Mehregany, Micro flow sensor using polycrystalline silicon carbide. J. Sens. Sci. Tech. 18, 147–153 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Microelectronics Laboratory team for their help and collaboration, Armando Hernández, Víctor Aca, and Ignacio Juárez, to Leticia Tecuapetla and Carlos Netzahualcoyotl for their valuable collaboration in conducting the AFM and Raman measurements, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. F. Valencia-Grisales.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valencia-Grisales, D.F., Reyes-Betanzo, C. Tuning Electrical Properties and Achieving High TCR in P-Doped a-SixC1−x:H Films. J. Electron. Mater. 53, 3946–3955 (2024). https://doi.org/10.1007/s11664-024-11166-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-024-11166-x

Keywords

Navigation