Log in

Advancing Accuracy in Perovskite Tandem Solar Cell Efficiency via Transfer Matrix-Based Realistic Device Simulations

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Numerous researchers have dedicated efforts toward enhancing the efficiency of solar cells, particularly through the utilization of multi-junction or tandem solar cell configurations. However, a common approach employed by many researchers involves the use of the standard absorption formula (SAF) to determine the transmitted spectrum from the top cell to illuminate the bottom cells. The SAF method relies on conventional absorption calculations, neglecting reflection, refraction, and parasitic absorption losses. In this study, the transfer matrix (TRM) method, which accounts for reflection and refraction losses and an interference effect, is reported for the accurate calculation of a filtered spectrum. A comparative analysis between the SAF and TRM approaches reveal that the TRM technique provides a more accurate representation of the transmitted spectrum, particularly when considering reflection, refraction, and parasitic absorption losses. The primary aim of this research is to precisely predict the efficiency of tandem configurations by integrating multiple low-bandgap semiconductor bottom cells (BCs) with a top cell (TC) based on high-bandgap perovskite (PVK). Furthermore, the optimization of current matching is achieved by adjusting the thicknesses of the top absorber layer (TAL) and bottom absorber layer (BAL) based on the obtained filtered spectra. Tandem devices optimized using the TRM approach exhibit superior performance, achieving efficiencies of 28.72% (PVK/c-Si), 27.88% (PVK/CIGS), and 29.99% (PVK/PVK). This comparative investigation underscores the importance of considering reflection and refraction losses in tandem solar cell design and highlights the effectiveness of the TRM technique in enhancing device performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data supporting this finding are available on request from the corresponding authors.

References

  1. K. Wang, L. Zheng, Y. Hou, A. Nozariasbmarz, B. Poudel, J. Yoon, T. Ye, D. Yang, A.V. Pogrebnyakov, and V. Gopalan, Overcoming Shockley-Queisser limit using halide perovskite platform? Joule 6(4), 756 (2022).

    CAS  Google Scholar 

  2. M. Dhankhar, O.P. Singh, and V. Singh, Physical principles of losses in thin film solar cells and efficiency enhancement methods. Renew. Sustain. Energy Rev. 40, 214 (2014).

    Google Scholar 

  3. D. Luo, R. Su, W. Zhang, Q. Gong, and R. Zhu, Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 5(1), 44 (2020).

    CAS  Google Scholar 

  4. R. Gahrotra, V. Sharma, A.R. Dogra, P. Malik, and P. Kumar, Temperature dependent morphological and electro-optical characteristics of dye doped cholesteric liquid crystal. ECS Trans. 107(1), 5481 (2022).

    CAS  Google Scholar 

  5. A.R. Dogra, V. Sharma, P. Khanra, and P. Kumar (2021). Evaporative deposition of SiO2 nanoparticles multilayer on ITO substrates and application for vertical alignment of liquid crystals-Effect of dichroic dye. In: Journal of Physics: Conference Series (Vol. 2070, No. 1, p. 012071). IOP Publishing.

  6. A. Thakur, D. Singh, and S.K. Gill, Numerical simulations of 26.11% efficient planar CH3NH3PbI3 perovskite nip solar cell. Mater. Today: Proc. 71, 195 (2022).

    CAS  Google Scholar 

  7. A. Thakur, D. Singh, and S. K. Gill (2022). Comparative performance analysis and modelling of tin based planar Perovskite solar cell. In: 2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP) (pp. 1-5). IEEE.

  8. J.P. Mailoa, C.D. Bailie, E.C. Johlin, E.T. Hoke, A.J. Akey, W.H. Nguyen, M.D. McGehee, and T. Buonassisi, A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Appl. Phys. Lett. 106(12), 121105 (2015).

    Google Scholar 

  9. J. Werner, C.-H. Weng, A. Walter, L. Fesquet, J.P. Seif, S. De Wolf, B. Niesen, and C. Ballif, Efficient monolithic perovskite/silicon tandem solar cell with cell area> 1 cm2. J. Phys. Chem. Lett. 7(1), 161 (2016).

    CAS  PubMed  Google Scholar 

  10. E. Lamanna, F. Matteocci, E. Calabrò, L. Serenelli, E. Salza, L. Martini, F. Menchini, M. Izzi, A. Agresti, and S. Pescetelli, Mechanically stacked, two-terminal graphene-based perovskite/silicon tandem solar cell with efficiency over 26%. Joule 4(4), 865 (2020).

    CAS  Google Scholar 

  11. E. Aydin, E. Ugur, B.K. Yildirim, T.G. Allen, P. Dally, A. Razzaq, F. Cao, L. Xu, B. Vishal, and A. Yazmaciyan, Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature 623(7988), 732 (2023).

    CAS  PubMed  Google Scholar 

  12. Y. Li, B. Shi, Q. Xu, L. Yan, N. Ren, Y. Li, W. Han, Z. Zhu, Y. Zhang, and J. Liu, CsCl induced efficient fully-textured perovskite/crystalline silicon tandem solar cell. Nano Energy 122, 109285 (2024).

    CAS  Google Scholar 

  13. Y.H. Jang, J.M. Lee, J.W. Seo, I. Kim, and D.-K. Lee, Monolithic tandem solar cells comprising electrodeposited CuInSe 2 and perovskite solar cells with a nanoparticulate ZnO buffer layer. J Mater Chem A 5(36), 19439 (2017).

    CAS  Google Scholar 

  14. Q. Han, Y.-T. Hsieh, L. Meng, J.-L. Wu, P. Sun, E.-P. Yao, S.-Y. Chang, S.-H. Bae, T. Kato, and V. Bermudez, High-performance perovskite/Cu (In, Ga) Se2 monolithic tandem solar cells. Science 361(6405), 904 (2018).

    CAS  PubMed  Google Scholar 

  15. M. Hedayati, and S. Olyaee, High-efficiency pn homojunction perovskite and CIGS tandem solar cell. Crystals 12(5), 703 (2022).

    CAS  Google Scholar 

  16. E. Priyanka, and D. Muchahary, Performance improvement of perovskite/CIGS tandem solar cell using barium stannate charge transport layer and achieving PCE of 39% numerically. Sol. Energy 267, 112218 (2024).

    CAS  Google Scholar 

  17. H. Bi, J. Liu, Z. Zhang, L. Wang, R. Beresneviciute, D. Tavgeniene, G. Kapil, C. Ding, A.K. Baranwal, and S.R. Sahamir, All-perovskite tandem solar cells approach 26.5% efficiency by employing wide bandgap lead perovskite solar cells with new monomolecular hole transport layer. ACS Energy Lett. 8(9), 3852 (2023).

    CAS  Google Scholar 

  18. S. Albrecht, M. Saliba, J.P.C. Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, and L. Korte, Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy Environ. Sci. 9(1), 81 (2016).

    CAS  Google Scholar 

  19. J. Peng, T. Duong, X. Zhou, H. Shen, Y. Wu, H.K. Mulmudi, Y. Wan, D. Zhong, J. Li, and T. Tsuzuki, Efficient indium-doped TiOx electron transport layers for high-performance perovskite solar cells and perovskite-silicon tandems. Adv. Energy Mater. 7(4), 1601768 (2017).

    Google Scholar 

  20. J. Werner, A. Walter, E. Rucavado, S.-J. Moon, D. Sacchetto, M. Rienaecker, R. Peibst, R. Brendel, X. Niquille, and S. De Wolf, Zinc tin oxide as high-temperature stable recombination layer for mesoscopic perovskite/silicon monolithic tandem solar cells. Appl. Phys. Lett. 109(23), 233902 (2016).

    Google Scholar 

  21. F. Sahli, B.A. Kamino, J. Werner, M. Bräuninger, B. Paviet-Salomon, L. Barraud, R. Monnard, J.P. Seif, A. Tomasi, and Q. Jeangros, Improved optics in monolithic perovskite/silicon tandem solar cells with a nanocrystalline silicon recombination junction. Adv. Energy Mater. 8(6), 1701609 (2018).

    Google Scholar 

  22. K.A. Bush, A.F. Palmstrom, Z.J. Yu, M. Boccard, R. Cheacharoen, J.P. Mailoa, D.P. McMeekin, R.L. Hoye, C.D. Bailie, and T. Leijtens, 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2(4), 1 (2017).

    Google Scholar 

  23. F. Sahli, J. Werner, B.A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, and C. Ballif, Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17(9), 820 (2018).

    CAS  PubMed  Google Scholar 

  24. J. Zheng, C.F.J. Lau, H. Mehrvarz, F.-J. Ma, Y. Jiang, X. Deng, A. Soeriyadi, J. Kim, M. Zhang, and L. Hu, Large area efficient interface layer free monolithic perovskite/homo-junction-silicon tandem solar cell with over 20% efficiency. Energy Environ. Sci. 11(9), 2432 (2018).

    CAS  Google Scholar 

  25. F. Hou, L. Yan, B. Shi, J. Chen, S. Zhu, Q. Ren, S. An, Z. Zhou, H. Ren, and C. Wei, Monolithic perovskite/silicon-heterojunction tandem solar cells with open-circuit voltage of over 1.8 V. ACS Appl. Energy Mater. 2(1), 243 (2019).

    CAS  Google Scholar 

  26. L. Mazzarella, Y.H. Lin, S. Kirner, A.B. Morales-Vilches, L. Korte, S. Albrecht, E. Crossland, B. Stannowski, C. Case, and H.J. Snaith, Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%. Adv. Energy Mater. 9(14), 1803241 (2019).

    Google Scholar 

  27. G. Nogay, F. Sahli, J. Werner, R. Monnard, M. Boccard, M. Despeisse, F. Haug, Q. Jeangros, A. Ingenito, and C. Ballif, 25.1%-efficient monolithic perovskite/silicon tandem solar cell based on ap-type monocrystalline textured silicon wafer and high-temperature passivating contacts. ACS Energy Lett. 4(4), 844 (2019).

    CAS  Google Scholar 

  28. Y. Wu, D. Yan, J. Peng, Y. Wan, S.P. Phang, H. Shen, N. Wu, C. Barugkin, X. Fu, and S. Surve, Monolithic perovskite/silicon-homojunction tandem solar cell with over 22% efficiency. Energy Environ. Sci. 10(11), 2472 (2017).

    CAS  Google Scholar 

  29. A.J. Bett, P.S. Schulze, K.M. Winkler, Ö.S. Kabakli, I. Ketterer, L.E. Mundt, S.K. Reichmuth, G. Siefer, L. Cojocaru, and L. Tutsch, Two-terminal Perovskite silicon tandem solar cells with a high-Bandgap Perovskite absorber enabling voltages over 1.8 V. Prog. Photovoltaics Res. Appl. 28(2), 99 (2020).

    CAS  Google Scholar 

  30. Q. Xu, Y. Zhao, and X. Zhang, Light management in monolithic perovskite/silicon tandem solar cells. Solar RRL 4(2), 1900206 (2020).

    Google Scholar 

  31. T. Todorov, T. Gershon, O. Gunawan, Y.S. Lee, C. Sturdevant, L.Y. Chang, and S. Guha, Monolithic perovskite-CIGS tandem solar cells via in situ band gap engineering. Adv. Energy Mater. 5(23), 1500799 (2015).

    Google Scholar 

  32. A.R. Uhl, A. Rajagopal, J.A. Clark, A. Murray, T. Feurer, S. Buecheler, A.K.Y. Jen, and H.W. Hillhouse, Solution-processed low-bandgap CuIn (S, Se) 2 absorbers for high-efficiency single-junction and monolithic chalcopyrite-perovskite tandem solar cells. Adv. Energy Mater. 8(27), 1801254 (2018).

    Google Scholar 

  33. M. Jošt, T. Bertram, D. Koushik, J.A. Marquez, M.A. Verheijen, M.D. Heinemann, E. Köhnen, A. Al-Ashouri, S. Braunger, and F. Lang, 21.6%-efficient monolithic perovskite/Cu (In, Ga) Se2 tandem solar cells with thin conformal hole transport layers for integration on rough bottom cell surfaces. ACS Energy Lett. 4(2), 583 (2019).

    Google Scholar 

  34. F. Fu, S. Nishiwaki, J. Werner, T. Feurer, S. Pisoni, Q. Jeangros, S. Buecheler, C. Ballif, and A. N. Tiwari, “Flexible perovskite/Cu (In, Ga) Se2 monolithic tandem solar cells,” ar**v preprint ar**v:1907.10330, 2019.

  35. M.F.M. Noh, N.A. Arzaee, C.C. Fat, S.K. Tiong, M.A.M. Teridi, and A.W.M. Zuhdi, Perovskite/CIGS tandem solar cells: progressive advances from technical perspectives. Mater. Today Energy 39, 101473 (2023).

    Google Scholar 

  36. S. S. Mali, J. V. Patil, J. A. Steele, M. K. Nazeeruddin, J. H. Kim, and C. K. Hong, “All-inorganic halide perovskites for air-processed “n–i–p” monolithic perovskite/organic hybrid tandem solar cells exceeding 23% efficiency,” Energy & Environmental Science, 2024.

  37. M. Islam, T. Ahmed, S.U.D. Shamim, A.A. Piya, and A. Basak, Thickness dependent numerical investigations of lead free perovskite/CIGS bilayer solar cell using SCAPS-1D. Chem. Inorg. Mater. 2, 100034 (2024).

    Google Scholar 

  38. F. Jiang, T. Liu, B. Luo, J. Tong, F. Qin, S. **ong, Z. Li, and Y. Zhou, A two-terminal perovskite/perovskite tandem solar cell. J. Mater. Chem. A 4(4), 1208 (2016).

    CAS  Google Scholar 

  39. G.E. Eperon, T. Leijtens, K.A. Bush, R. Prasanna, T. Green, J.T.-W. Wang, D.P. McMeekin, G. Volonakis, R.L. Milot, and R. May, Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 354(6314), 861 (2016).

    CAS  PubMed  Google Scholar 

  40. A. Rajagopal, Z. Yang, S.B. Jo, I.L. Braly, P.W. Liang, H.W. Hillhouse, and A.K.Y. Jen, Highly efficient perovskite–perovskite tandem solar cells reaching 80% of the theoretical limit in photovoltage. Adv. Mater. 29(34), 1702140 (2017).

    Google Scholar 

  41. R. Sheng, M.T. Horantner, Z. Wang, Y. Jiang, W. Zhang, A. Agosti, S. Huang, X. Hao, A. Ho-Baillie, and M. Green, Monolithic wide band gap perovskite/perovskite tandem solar cells with organic recombination layers. J. Phys. Chem. C 121(49), 27256 (2017).

    CAS  Google Scholar 

  42. D. Zhao, C. Chen, C. Wang, M.M. Junda, Z. Song, C.R. Grice, Y. Yu, C. Li, B. Subedi, and N.J. Podraza, Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nat. Energy 3(12), 1093 (2018).

    CAS  Google Scholar 

  43. J. Ávila, C. Momblona, P. Boix, M. Sessolo, M. Anaya, G. Lozano, K. Vandewal, H. Míguez, and H.J. Bolink, High voltage vacuum-deposited CH3NH3PbI3–CH3NH3PbI3 tandem solar cells. Energy Environ. Sci. 11(11), 3292 (2018).

    Google Scholar 

  44. R. Lin, K. **ao, Z. Qin, Q. Han, C. Zhang, M. Wei, M.I. Saidaminov, Y. Gao, J. Xu, and M. **ao, Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn (ii) oxidation in precursor ink. Nat. Energy 4(10), 864 (2019).

    CAS  Google Scholar 

  45. A.F. Palmstrom, G.E. Eperon, T. Leijtens, R. Prasanna, S.N. Habisreutinger, W. Nemeth, E.A. Gaulding, S.P. Dunfield, M. Reese, and S. Nanayakkara, Enabling flexible all-perovskite tandem solar cells. Joule 3(9), 2193 (2019).

    CAS  Google Scholar 

  46. K. **ao, R. Lin, Q. Han, Y. Hou, Z. Qin, H.T. Nguyen, J. Wen, M. Wei, V. Yeddu, and M.I. Saidaminov, All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 5(11), 870 (2020).

    Google Scholar 

  47. M.I. Hossain, A.M. Saleque, S. Ahmed, I. Saidjafarzoda, M. Shahiduzzaman, W. Qarony, D. Knipp, N. Biyikli, and Y.H. Tsang, Perovskite/perovskite planar tandem solar cells: a comprehensive guideline for reaching energy conversion efficiency beyond 30%. Nano Energy 79, 105400 (2021).

    CAS  Google Scholar 

  48. X. Wu, Y. Liu, F. Qi, F. Lin, H. Fu, K. Jiang, S. Wu, L. Bi, D. Wang, and F. Xu, Improved stability and efficiency of perovskite/organic tandem solar cells with an all-inorganic perovskite layer. J. Mater. Chem. A 9(35), 19778 (2021).

    CAS  Google Scholar 

  49. J. Zheng, G. Wang, W. Duan, M.A. Mahmud, H. Yi, C. Xu, A. Lambertz, S. Bremner, K. Ding, and S. Huang, Monolithic perovskite–perovskite–silicon triple-junction tandem solar cell with an efficiency of over 20%. ACS Energy Lett. 7(9), 3003 (2022).

    CAS  Google Scholar 

  50. R. Lin, J. Xu, M. Wei, Y. Wang, Z. Qin, Z. Liu, J. Wu, K. **ao, B. Chen, and S.M. Park, All-perovskite tandem solar cells with improved grain surface passivation. Nature 603(7899), 73 (2022).

    CAS  PubMed  Google Scholar 

  51. N. Shrivastav, S. Kashyap, J. Madan, M.K. Mohammed, M.K. Hossain, and R. Pandey, An efficient all-perovskite two terminal monolithic tandem solar cell with improved photovoltaic parameters: a theoretical prospect. Optik 281, 170821 (2023).

    CAS  Google Scholar 

  52. Y.-H. Chiang, K. Frohna, H. Salway, A. Abfalterer, L. Pan, B. Roose, M. Anaya, and S.D. Stranks, Vacuum-deposited wide-bandgap perovskite for all-perovskite tandem solar cells. ACS Energy Lett. 8, 2728 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. A. Bojar, D. Micha, M. Giteau, M.A. Ruiz-Preciado, U.W. Paetzold, M. Simor, V. Gevaerts, R. Carron, K. Medjoubi, and S. Collin, Optical simulations and optimization of perovskite/CI (G) S tandem solar cells using the transfer matrix method. J. Phys.: Energy 5(3), 035001 (2023).

    Google Scholar 

  54. Y. Wang, R. Lin, X. Wang, C. Liu, Y. Ahmed, Z. Huang, Z. Zhang, H. Li, M. Zhang, and Y. Gao, Oxidation-resistant all-perovskite tandem solar cells in substrate configuration. Nat. Commun. 14(1), 1819 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. J. Madan, R. Pandey, and R. Sharma, Device simulation of 17.3% efficient lead-free all-perovskite tandem solar cell. Sol. Energy 197, 212 (2020).

    CAS  Google Scholar 

  56. M. Abderrezek, and M.E. Djeghlal, Numerical study of CZTS/CZTSSe tandem thin film solar cell using SCAPS-1D. Optik 242, 167320 (2021).

    Google Scholar 

  57. T. Bendib, H. Bencherif, M. Abdi, F. Meddour, L. Dehimi, and M. Chahdi, Combined optical-electrical modeling of perovskite solar cell with an optimized design. Opt. Mater. 109, 110259 (2020).

    CAS  Google Scholar 

  58. A. Khanna, R. Pandey, J. Madan, and A. Dhingra, Comprehensive device simulation of 16.9% efficient two-terminal PbS–PbS CQD tandem solar cell. Opt. Mater. 122, 111677 (2021).

    CAS  Google Scholar 

  59. Y. Zang, Y. Liu, T. Shao, J. Xuan, B. Yang, Y. Liu, Z. Hu, and W. Yan, Optical design of monolithic two-terminal perovskite/Si tandem solar cells for efficient photon management. Mater. Today Commun. 38, 108199 (2024).

    CAS  Google Scholar 

  60. C. Messmer, D. Chojniak, A. J. Bett, S. K. Reichmuth, J. Hohl‐Ebinger, M. Bivour, M. Hermle, J. Schön, M. C. Schubert, and S. W. Glunz, “Toward more reliable measurement procedures of perovskite‐silicon tandem solar cells: The role of transient device effects and measurement conditions,” Progress in Photovoltaics: Research and Applications, 2024.

  61. Z. Li, H. Li, L. Chen, J. Huang, W. Wang, H. Wang, J. Li, B. Fan, Q. Xu, and W. Song, Semitransparent perovskite solar cells with ultrathin silver electrodes for tandem solar cells. Sol. Energy 206, 294 (2020).

    CAS  Google Scholar 

  62. N. Shrivastav, J. Madan, R. Pandey, and A.E. Shalan, Investigations aimed at producing 33% efficient perovskite–silicon tandem solar cells through device simulations. RSC Adv. 11(59), 37366 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel, P. Caprioglio, and S. Albrecht, Monolithic perovskite/silicon tandem solar cell with> 29% efficiency by enhanced hole extraction. Science 370(6522), 1300 (2020).

    CAS  PubMed  Google Scholar 

  64. N. Shrivastav, S. Kashyap, J. Madan, A.K. Al-Mousoi, M.K. Mohammed, M.K. Hossain, R. Pandey, and J. Ramanujam, Perovskite-CIGS monolithic tandem solar cells with 29.7% efficiency: a numerical study. Energy Fuels 37(4), 3083 (2023).

    CAS  Google Scholar 

  65. C. Santa Clara, “ATLAS User’s Manual A 2-D Numerical Device Simulator,” 2010.

  66. H. Shen, J. Peng, D. Jacobs, N. Wu, J. Gong, Y. Wu, S.K. Karuturi, X. Fu, K. Weber, and X. **ao, Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity. Energy Environ. Sci. 11(2), 394 (2018).

    CAS  Google Scholar 

Download references

Acknowledgments

For all the support in this research work, the authors are very thankful to the VLSI Centre of Excellence, Chitkara University, Punjab, India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nikhil Shrivastav, Jaya Madan or Rahul Pandey.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrivastav, N., Madan, J. & Pandey, R. Advancing Accuracy in Perovskite Tandem Solar Cell Efficiency via Transfer Matrix-Based Realistic Device Simulations. J. Electron. Mater. 53, 4214–4223 (2024). https://doi.org/10.1007/s11664-024-11141-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-024-11141-6

Keywords

Navigation