Log in

Multilevel and Low-Power Resistive Switching Based on pn Heterojunction Memory

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, unipolar resistive switching (RS) is demonstrated in a Ni/p-NiO/n+-Si heterojunction device based on the formation/rupture of conducting filaments (CFs). The potential barrier of the pn heterostructure can effectively increase the device initial resistance, with the benefit of low power and multilevel RS under proper compliance currents (CCs). In addition, this difference in CF size occurs between the dielectric layer and depletion region due to the existence of a built-in electric field. As a result, the RS is localized in the p-NiO/n+-Si depletion region, increasing the degree of localization and decreasing resistance fluctuation. This work will provide a feasible approach for low-power nonvolatile multi-bit memory applications in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data are available from the corresponding author upon request.

References

  1. R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Gener. Comput. Syst. Int. J. Esci. 25, 599 (2009).

    Article  Google Scholar 

  2. G.I. Meijer, Materials science—Who wins the nonvolatile memory race. Science 319, 1625 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. D.E. Kotecki, J.D. Baniecki, H. Shen, R.B. Laibowitz, K.L. Saenger, J.J. Lian, T.M. Shaw, S.D. Athavale, C. Cabral, P.R. Duncombe, M. Gutsche, G. Kunkel, Y.-J. Park, Y.-Y. Wang, and R. Wise, (Ba, Sr)TiO3 dielectrics for future stacked-capacitor DRAM. IBM J. Res. Dev. 43, 367 (1999).

    Article  CAS  Google Scholar 

  4. L. Wei, J.G. Alzate, U. Arslan, J. Brockman, N. Das, K. Fischer, T. Ghani, O. Golonzka, P. Hentges, R. Jahan, P. Jain, B. Lin, M. Meterelliyoz, J. O’Donnell, C. Puls, P. Quintero, T. Sahu, M. Sekhar, A. Vangapaty, C. Wiegand and F. Hamzaoglu, IEEE International Solid- State Circuits Conference—(ISSCC) (2019), p. 214.

  5. G. Atwood, Engineering—Phase-change materials for systems. Science 321, 210 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. M.J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang, J.H. Hur, Y.B. Kim, C.J. Kim, D.H. Seo, S. Seo, U.I. Chung, I.K. Yoo, and K. Kim, A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures. Nat. Mater. 10, 625 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Z. Zhang, Z. Wang, T. Shi, C. Bi, F. Rao, Y. Cai, Q. Liu, H. Wu, and P. Zhou, Memory materials and devices: From concept to application. InfoMat 2, 261 (2020).

    Article  CAS  Google Scholar 

  8. F. Zahoor, T.Z. Azni Zulkifli, and F.A. Khanday, Resistive random access memory (RRAM): an overview of materials, switching mechanism, performance, multilevel cell (mlc) storage, modeling, and applications. Nanoscale Res. Lett. 15, 1–26 (2020).

    Article  Google Scholar 

  9. L. Cheng, M.Y. Zhang, Y. Li, Y.X. Zhou, Z.R. Wang, S.Y. Hu, S.B. Long, M. Liu, and X.S. Miao, Reprogrammable logic in memristive crossbar for in-memory computing. J. Phys. D Appl. Phys. 50, 505152 (2017).

    Article  Google Scholar 

  10. R. Schmitt, M. Kubicek, E. Sediva, M. Trassin, M.C. Weber, A. Rossi, H. Hutter, J. Kreisel, M. Fiebig, and J.L.M. Rupp, Accelerated ionic motion in amorphous Memristor oxides for Nonvolatile memories and neuromorphic computing. Adv. Funct. Mater. 29, 1804782 (2019).

    Article  Google Scholar 

  11. L. Zhang, Z. Tang, D. Yao, Z. Fan, S. Hu, Q.-J. Sun, X.-G. Tang, Y.-P. Jiang, X. Guo, M. Huang, G. Zhong, and J. Gao, Synaptic behaviors in flexible Au/WO /Pt/mica memristor for neuromorphic computing system. Mater. Today Phys. 23, 100650 (2022).

    Article  CAS  Google Scholar 

  12. K.J. Wu, Y.X. Chen, J.J. Cheng, and K.K. Xu, Use of carrier injection engineering to increase the light intensity of a polycrystalline silicon avalanche mode light-emitting device. J. Appl. Phys. 128, 173104 (2020).

    Article  CAS  ADS  Google Scholar 

  13. C.C. Hsu, H. Chuang, and W.C. Jhang, Annealing effect on forming-free bipolar resistive switching characteristics of sol-gel WOx resistive memories with Al conductive bridges. J. Alloys Compd. 882, 160758 (2021).

    Article  CAS  Google Scholar 

  14. K. Leng, X. Yu, Z. Ma, W. Li, J. Xu, L. Xu, and K. Chen, Artificial synapse arrays based on SiOx/TiOx memristive crossbar with high uniformity for neuromorphic computing. Appl. Phys. Lett. 120, 043101 (2022).

    Article  CAS  ADS  Google Scholar 

  15. L. Yang, D. Lin, M. Qi, X. **u, H. Dong, and H. Wang, Reliable resistive switching and synaptic behaviors based on a TiOx-Doped N memristor for information storage and neuromorphic computing. Phys. Status Solidi-RRL 15, 2100255 (2021).

    Article  CAS  Google Scholar 

  16. P. Pal, S. Mazumder, C.-W. Huang, D.D. Lu, and Y.-H. Wang, Impact of the barrier layer on the high thermal and mechanical stability of a flexible resistive memory in a neural network application. ACS Appl. Electron. Mater. 4, 1072 (2022).

    Article  CAS  Google Scholar 

  17. A. Saleem, D. Kumar, A. Singh, S. Rajasekaran, and T.Y. Tseng, Oxygen vacancy transition in HfOx-based flexible, robust, and synaptic Bi-layer memristor for neuromorphic and wearable applications. Adv. Mater. Technol. 7, 2101208 (2022).

    Article  CAS  Google Scholar 

  18. F. Gul and H. Efeoglu, Bipolar resistive switching and conduction mechanism of an Al/ZnO/Al-based memristor. Superlattices Microstruct. 101, 172 (2017).

    Article  CAS  ADS  Google Scholar 

  19. S.W. Han, C.J. Park, and M.W. Shin, The role of Al atoms in resistive switching for Al/ZnO/Pt resistive random access memory (RRAM) device. Surf. Interfaces 31, 102099 (2022).

    Article  CAS  Google Scholar 

  20. J. Bartolomé, M. Taeno, R. Martínez-Casado, D. Maestre, and A. Cremades, Ethanol gas sensing mechanisms of p-type NiO at room temperature. Appl. Surf. Sci. 30(579), 152134 (2022).

    Article  Google Scholar 

  21. H.K. Li, T.P. Chen, S.G. Hu, X.D. Li, Y. Liu, P.S. Lee, X.P. Wang, H.Y. Li, and G.Q. Lo, Highly spectrum-selective ultraviolet photodetector based on p-NiO/n-IGZO thin film heterojunction structure. Opt. Express 23, 27683 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  22. X.X. Cui, J.J. **, J.J. Zou, Q. Tang, Y. Ai, X. Zhang, Z. Wang, Y. Zhou, Z.K. Zhu, G.Q. Tang, Q. Cao, S. Liu, X.W. Liu, and Q.D. Tai, NiOx nanocrystals with Tunable size and energy levels for efficient and UV stable perovskite solar cells. Adv. Funct. Mater. 32, 152134 (2022).

    Article  Google Scholar 

  23. A. Diallo, K. Kaviyarasu, S. Ndiaye, B.M. Mothudi, A. Ishaq, V. Rajendran, and M. Maaza, Structural, optical and photocatalytic applications of biosynthesized NiO nanocrystals. Green Chem. Lett. Rev. 11, 166 (2018).

    Article  CAS  Google Scholar 

  24. C. Cagli, F. Nardi, B. Harteneck, Z.K. Tan, Y.G. Zhang, and D. Ielmini, Resistive-switching crossbar memory based on Ni-NiO core-shell nanowires. Small 7, 2899 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Y. Nishi, H. Sasakura, and T. Kimoto, Conductance fluctuation in NiO-based resistive switching memory. J. Appl. Phys. 124, 152134 (2018).

    Article  ADS  Google Scholar 

  26. Y. Ahn and J.Y. Son, Resistive random access memory characteristics of NiO thin films with an oxygen-deficient NiO0.95 layer. Ceram. Int. 47, 9342 (2021).

    Article  CAS  Google Scholar 

  27. X. Kang, J. Guo, Y. Gao, S. Ren, W. Chen, and X. Zhao, NiO-based resistive memory devices with highly improved uniformity boosted by ionic liquid pre-treatment. Appl. Surf. Sci. 480, 57 (2019).

    Article  CAS  ADS  Google Scholar 

  28. Y. Ahn, H.W. Shin, T.H. Lee, W.H. Kim, and J.Y. Son, Effects of a Nb nanopin electrode on the resistive random-access memory switching characteristics of NiO thin films. Nanoscale 10, 13443 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. T.K. Huang, J.Y. Chen, Y.H. Ting, and W.W. Wu, Ni/NiO/HfO2 Core/Multishell nanowire ReRAM devices with excellent resistive switching properties. Adv. Electron. Mater. 4, 1800256 (2018).

    Article  Google Scholar 

  30. J. Lee, J. Park, S. Jung and H. Hwang, Scaling effect of device area and film thickness on electrical and reliability characteristics of RRAM, IEEE International Interconnect Technology Conference, 1 (2011).

  31. G.D. Zhou, Z.J. Ren, L.D. Wang, B. Sun, S.K. Duan, and Q.L. Song, Artificial and wearable albumen protein memristor arrays with integrated memory logic gate functionality. Mater. Horiz. 6, 1877 (2019).

    Article  CAS  Google Scholar 

  32. K.K. Xu, Silicon electro-optic micro-modulator fabricated in standard CMOS technology as components for all silicon monolithic integrated optoelectronic systems. J. Micromech. Microeng. 31, 054001 (2021).

    Article  CAS  ADS  Google Scholar 

  33. J. Liu, Z. Yin, X. Cao, F. Zhao, L. Wang, W. Huang, and H. Zhang, Fabrication of flexible, all-reduced graphene oxide non-volatile memory devices. Adv. Mater. 25, 233 (2013).

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSFC (No. 62004224), Natural Science Foundation of Hunan province, China (No. 2019JJ50751 and No. 2022JJ30759), and the Project of State Key Laboratory of High-Performance Complex Manufacturing, Central South University, China (No. ZZYJKT2019-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Yu, H., Fang, R. et al. Multilevel and Low-Power Resistive Switching Based on pn Heterojunction Memory. J. Electron. Mater. 53, 2162–2167 (2024). https://doi.org/10.1007/s11664-023-10906-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10906-9

Keywords

Navigation