Log in

Fe3+ Sensing Based on Hydrogel Optical Fiber Doped with Nitrogen Carbon Dots

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, a nontoxic and biocompatible hydrogel optic fiber Fe3+ sensor is presented. Nitrogen carbon dots (NCDs) as fluorescence indicators are prepared by a one-step hydrothermal method using citric acid as the carbon source and urea as the nitrogen source. Transmission electron microscopy images and x-ray diffraction analysis show that the average size of the NCDs is 3.94 nm, and they have an amorphous structure. X-ray photoelectron spectroscopy shows that nitrogen is effectively doped into the framework of the NCDs. The hydrogel optical fiber with a core-cladding structure is fabricated using different concentrations of polyethylene glycol diacrylate as precursor. The NCDs were incorporated into the core of the hydrogel fiber for Fe3+ sensing. NCDs were selectively quenched by Fe3+ diffused into the hydrogel fiber. The sensitivity of the system was optimized by varying the concentration of doped NCDs. The fluorescence intensity decreased with the increase in temperature, with the greatest sensitivity at 24°C. By measuring the fluorescence intensity, the quantitative and selective detection of iron ions was realized in the range of 0–60 um, and the detection limit was 0.802 um. It has good application prospects in the detection of Fe3+ and can realize the detection of implanted biological Fe3+ in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.W. Hentze, M.U. Muckenthaler, B. Galy, and C. Camaschella, Two to tango: regulation of Mammalian iron metabolism. Cell 142, 24 (2010).

    Article  CAS  Google Scholar 

  2. G. Weiss and L.T. Goodnough, Anemia of chronic disease. N. Engl. J. Med. 352, 1011 (2005).

    Article  CAS  Google Scholar 

  3. L.T. Goodnough, E. Nemeth, and T. Ganz, Detection, evaluation, and management of iron-restricted erythropoiesis. Blood 116, 4754 (2010).

    Article  CAS  Google Scholar 

  4. L. Thomas and C. Thomas, Detection of iron restriction in anaemic and non-anaemic patients: new diagnostic approaches. Eur. J. Haematol. 99, 262 (2017).

    Article  CAS  Google Scholar 

  5. G.A. Antunes, H.S. dos Santos, Y.P. da Silva, M.M. Silva, C.M.S. Piatnicki, and D. Samios, Determination of Iron, Copper, Zinc, Aluminum, and Chromium in Biodiesel by flame atomic absorption spectrometry using a microemulsion preparation method. Energy Fuels 31, 2944 (2017).

    Article  CAS  Google Scholar 

  6. H. Hu, Y. Tang, H. Ying, M. Wang, P. Wan, and X.J. Yang, The effect of copper on iron reduction and its application to the determination of total iron content in iron and copper ores by potassium dichromate titration. Talanta 125, 425 (2014).

    Article  CAS  Google Scholar 

  7. Y. Zhu, D. Pan, X. Hu, H. Han, M. Lin, and C. Wang, An electrochemical sensor based on reduced graphene oxide/gold nanoparticles modified electrode for determination of iron in coastal waters. Sens. Actuators B Chem. 243, 1 (2017).

    Article  CAS  Google Scholar 

  8. B. Peng, Y. Shen, Z. Gao, M. Zhou, Y. Ma, and S. Zhao, Determination of total iron in water and foods by dispersive liquid-liquid microextraction coupled with microvolume UV-vis spectrophotometry. Food Chem. 176, 288 (2015).

    Article  CAS  Google Scholar 

  9. W. Ming, X. Wang, W. Lu, Z. Zhang, X. Song, J. Li, and L. Chen, Magnetic molecularly imprinted polymers for the fluorescent detection of trace 17β-estradiol in environmental water. Sens. Actuators B Chem. 238, 1309 (2017).

    Article  CAS  Google Scholar 

  10. Y. Cai, M. Li, M. Wang, J. Li, Y.-N. Zhang, and Y. Zhao, Optical fiber sensors for metal ions detection based on novel fluorescent materials. Front. Phys. 8, 598209 (2020).

    Article  Google Scholar 

  11. V.M. Naik, S.V. Bhosale, and G.B. Kolekar, A brief review on the synthesis, characterisation and analytical applications of nitrogen doped carbon dots. Anal. Methods 14, 877 (2022).

    Article  CAS  Google Scholar 

  12. Y. Wang, T. Lv, K. Yin, N. Feng, X. Sun, J. Zhou, and H. Li, Carbon dot-based hydrogels: preparations properties and applications. Small 19, e2207048 (2023).

    Article  Google Scholar 

  13. L. Ðorđević, F. Arcudi, and M. Prato, Preparation, functionalization and characterization of engineered carbon nanodots. Nat. Protoc. 14, 2931 (2019).

    Article  Google Scholar 

  14. X.C. Li, S.J. Zhao, B.L. Li, K. Yang, M.H. Lan, and L.T. Zeng, Advances and perspectives in carbon dot-based fluorescent probes: mechanism, and application. Coord. Chem. Rev. 431, 213686 (2021).

    Article  CAS  Google Scholar 

  15. Y.F. Wang and A.G. Hu, Carbon quantum dots: synthesis, properties and applications. J. Mater. Chem. C 2, 6921 (2014).

    Article  CAS  Google Scholar 

  16. W. Su, R. Guo, F. Yuan, Y. Li, X. Li, Y. Zhang, S. Zhou, and L. Fan, Red-emissive carbon quantum dots for nuclear drug delivery in cancer stem cells. J. Phys. Chem. Lett. 11, 1357 (2020).

    Article  CAS  Google Scholar 

  17. R. Atchudan, T.N.J.I. Edison, S. Perumal, N. Muthuchamy, and Y.R. Lee, Hydrophilic nitrogen-doped carbon dots from biowaste using dwarf banana peel for environmental and biological applications. Fuel 275, 117821 (2020).

    Article  CAS  Google Scholar 

  18. L. Wang, J. Jana, J.S. Chung, and S.H. Hur, High quantum yield aminophenylboronic acid-functionalized N-doped carbon dots for highly selective hypochlorite ion detection. Spectrochim. Acta A Mol. Biomol. Spectrosc. 260, 119895 (2021).

    Article  CAS  Google Scholar 

  19. Z. Kang and S.T. Lee, Carbon dots: advances in nanocarbon applications. Nanoscale 11, 19214 (2019).

    Article  CAS  Google Scholar 

  20. Z.-A. Qiao, Y. Wang, Y. Gao, H. Li, T. Dai, Y. Liu, and Q. Huo, Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem. Commun. 46, 8812 (2010).

    Article  CAS  Google Scholar 

  21. S. Mohapatra, M.K. Bera, and R.K. Das, Rapid “turn-on” detection of atrazine using highly luminescent N-doped carbon quantum dot. Sens. Actuators B CHEM 263, 459 (2018).

    Article  CAS  Google Scholar 

  22. P. Yang, Z. Zhu, T. Zhang, M. Chen, Y. Cao, W. Zhang, X. Wang, X. Zhou, and W. Chen, Facile synthesis and photoluminescence mechanism of green emitting xylose-derived carbon dots for anti-counterfeit printing. Carbon 146, 636 (2019).

    Article  CAS  Google Scholar 

  23. X. Gong, Q. Zhang, Y. Gao, S. Shuang, M.M.F. Choi, and C. Dong, Phosphorus and nitrogen dual-doped hollow carbon dot as a nanocarrier for doxorubicin delivery and biological imaging. ACS Appl. Mater. Interfaces 8, 11288 (2016).

    Article  CAS  Google Scholar 

  24. X. Gong, Y. Liu, Z. Yang, S. Shuang, Z. Zhang, and C. Dong, An “on-off-on” fluorescent nanoprobe for recognition of chromium(VI) and ascorbic acid based on phosphorus/nitrogen dual-doped carbon quantum dot. Anal. Chim. Acta 968, 85 (2017).

    Article  CAS  Google Scholar 

  25. Z. Peng, C. Ji, Y. Zhou, T. Zhao, and R.M. Leblanc, Polyethylene glycol (PEG) derived carbon dots: preparation and applications. Appl. Mater. Today 20, 100677 (2020).

    Article  Google Scholar 

  26. C. Ding, A. Zhu, and Y. Tian, Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc. Chem. Res. 47, 20 (2014).

    Article  CAS  Google Scholar 

  27. H.J. Kalinowski, J.L. Fabris, W.J. Bock, S.P. Wren, T. Sun, K.T.V. Grattan, A fluorescent optical fibre chemosensor for mercury detection, International Conference on Optical Fibre Sensors(OFS24) International Society for Optics and Photonics, (2015).

  28. T.-W. Sung and Y.-L. Lo, Highly sensitive and selective sensor based on silica-coated CdSe/ZnS nanoparticles for Cu2+ ion detection. Sens. Actuators B Chem. 165, 119 (2012).

    Article  CAS  Google Scholar 

  29. M. Elsherif, M.U. Hassan, A.K. Yetisen, and H. Butt, Hydrogel optical fibers for continuous glucose monitoring. Biosens. Bioelectron. 137, 25 (2019).

    Article  CAS  Google Scholar 

  30. N. Gogoi, M. Barooah, G. Majumdar, and D. Chowdhury, Carbon dots rooted agarose hydrogel hybrid platform for optical detection and separation of heavy metal ions. ACS Appl. Mater. Interfaces 7, 3058 (2015).

    Article  CAS  Google Scholar 

  31. J. Guo, M. Zhou, and C. Yang, Fluorescent hydrogel waveguide for on-site detection of heavy metal ions. Sci. Rep. 7, 7902 (2017).

    Article  Google Scholar 

  32. F.A. Permatasari, A.H. Aimon, F. Iskandar, T. Ogi, and K. Okuyama, Role of C-N configurations in the photoluminescence of graphene quantum dots synthesized by a hydrothermal route. Sci. Rep. 6, 21042 (2016).

    Article  CAS  Google Scholar 

  33. Z.F. Pu, Q.L. Wen, Y.J. Yang, X.M. Cui, J. Ling, P. Liu, and Q.E. Cao, Fluorescent carbon quantum dots synthesized using phenylalanine and citric acid for selective detection of Fe(3+) ions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 229, 117944 (2020).

    Article  CAS  Google Scholar 

  34. M. Zulfajri, G. Gedda, C.J. Chang, Y.P. Chang, and G.G. Huang, Cranberry beans derived carbon dots as a potential fluorescence sensor for selective detection of Fe3+ ions in aqueous solution. ACS Omega 4, 15382 (2019).

    Article  CAS  Google Scholar 

  35. Y. Liu, Y. Liu, S.J. Park, Y. Zhang, T. Kim, S. Chae, M. Park, and H.Y. Kim, One-step synthesis of robust nitrogen-doped carbon dots: acid-evoked fluorescence enhancement and their application in Fe3+ detection. J. Mater. Chem. A 3, 17747 (2015).

    Article  CAS  Google Scholar 

  36. L. Zhang, Z. Bian, A. Hu, J. Li, L. Liu, and F. Chu, Iodine ions sensing based on fluorescence quenching method and hydrogel fiber doped with fluorescein. Opt. Commun. 475, 126225 (2020).

    Article  CAS  Google Scholar 

  37. J. Xu, Y. Guo, T. Gong, K. Cui, L. Hou, and C. Yuan, B, N co-doped carbon dots based fluorescent test paper and hydrogel for visual and efficient dual ion detection. Inorg. Chem. Commun. 145, 110047 (2022).

    Article  CAS  Google Scholar 

  38. W. Wu, X. Wu, M. He, X. Yuan, J. Lai, and H. Sun, A novel carbon dot/polyacrylamide composite hydrogel film for reversible detection of the antibacterial drug ornidazole. RSC Adv. 11, 22993 (2021).

    Article  CAS  Google Scholar 

  39. M. Nagaraj, S. Ramalingam, C. Murugan, S. Aldawood, J.O. **, I. Choi, and M. Kim, Detection of Fe3+ ions in aqueous environment using fluorescent carbon quantum dots synthesized from endosperm of Borassus flabellifer. Environ. Res. 212, 113273 (2022).

    Article  CAS  Google Scholar 

  40. W. Lukosz and P. Pliska, Determination of thickness and refractive index of SiO2 films on silicon wafers using an Abbe refractometer. Opt. Commun. 85, 381 (1991).

    Article  CAS  Google Scholar 

  41. Y. Chen, H. Lian, Y. Wei, X. He, Y. Chen, B. Wang, Q. Zeng, and J. Lin, Concentration-induced multi-colored emissions in carbon dots: origination from triple fluorescent centers. Nanoscale 10, 6734 (2018).

    Article  CAS  Google Scholar 

  42. H.K. Sadhanala, S. Senapati, and K.K. Nanda, Temperature sensing using sulfur-doped carbon nanoparticles. Carbon 133, 200 (2018).

    Article  CAS  Google Scholar 

  43. G. Li, N. Lv, W. Bi, J. Zhang, and J. Ni, Nitrogen-doped carbon dots as a fluorescence probe suitable for sensing Fe3+ under acidic conditions. New J. Chem. 40, 10213 (2016).

    Article  CAS  Google Scholar 

  44. K. Qu, J. Wang, J. Ren, and X. Qu, Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(III) ions and dopamine. Chem. Eur. J. 19, 7243 (2013).

    Article  CAS  Google Scholar 

  45. A. Zhao, C. Zhao, M. Li, J. Ren, and X. Qu, Ionic liquids as precursors for highly luminescent, surface-different nitrogen-doped carbon dots used for label-free detection of Cu2+/Fe3+ and cell imaging. Anal. Chim. Acta 809, 128 (2014).

    Article  CAS  Google Scholar 

  46. H.T. Lin, J. Huang, and L.Y. Ding, A recyclable optical fiber sensor based on fluorescent carbon dots for the determination of ferric ion concentrations. J. Lightwave Technol. 37, 4815 (2019).

    Article  CAS  Google Scholar 

  47. L.S. Laxmeshwar, M.S. Jadhav, J.F. Akki, P. Raikar, J. Kumar, O. Prakash, R. Mahakud, and U.S. Raikar, Quantification of chloride and iron in sugar factory effluent using long period fiber grating chemical sensor. Sens. Actuators B Chem. 258, 850 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 62205195) and the Local College Capacity Building Project of the Shanghai Municipal Science and Technology Commission (No. 20020500700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anduo Hu.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 277 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, Z., Xu, Q., Chu, F. et al. Fe3+ Sensing Based on Hydrogel Optical Fiber Doped with Nitrogen Carbon Dots. J. Electron. Mater. 53, 642–651 (2024). https://doi.org/10.1007/s11664-023-10821-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10821-z

Keywords

Navigation