Log in

Low Field Giant Magnetoimpedance Effect in TbCo6.2

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report the presence of a giant magnetoimpedance (GMI) effect and multimagnon spin resonance in polycrystalline cylindrical TbCo6.2 at low magnetic fields. The structural and magnetic characterization supported the formation of well-grained TbCo6.2. The magnetoimpedance studies in TbCo6.2 were carried out by monitoring the reactance of the inductive element with varying magnetic field intensity from 0 to 1000 G, which is interpreted through the change of surface permeability driven by penetration depth at lower frequency ranges. The ac magnetoresistance (MRac) was found to be of the order of 20%, indicating a significant circular permeability change. Magnetoreactance (MX) of the order of 0.45% was observed, which is advantageous technologically for ac magnetic field sensors operating at lower frequencies. The magnetoimpedance response at high frequency was investigated using a ring resonator with a 50-Ω characteristic impedance and a fundamental resonance frequency of around 2.5 GHz. The switching of the signs of MR from negative to positive was attributed to the switching of macrospin interaction from the dipolar to the exchange kind, useful for frequency-driven magnetoresistive switches.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. Shen, J. Liu, H. Wang, D. **ng, D. Chen, Y. Liu, and J. Sun, Optimization of mechanical and giant magneto-impedance (GMI) properties of melt-extracted Co-rich amorphous microwires. Phys. Status Solidi Appl. Mater. Sci. 211(7), 1668 (2014).

    Article  CAS  Google Scholar 

  2. M. Vázquez, H. Chiriac, A. Zhukov, L. Panina, and T. Uchiyama, On the state-of-the-art in magnetic microwires and expected trends for scientific and technological studies. Phys. Status Solidi Appl. Mater. Sci. 208(3), 493 (2011).

    Article  Google Scholar 

  3. H. Wang, F.X. Qin, D.W. **ng, F.Y. Cao, X.D. Wang, H.X. Peng, and J.F. Sun, Relating residual stress and microstructure to mechanical and giant magneto-impedance properties in cold-drawn Co-based amorphous microwires. Acta Mater. 60(15), 5425 (2012).

    Article  CAS  Google Scholar 

  4. G.N. Elmanov, I.V. Kozlov, S.M. Irmagambetova, K.E. Prikhodko, R.D. Svetogorov, P.A. Chernavskii, A.A. Lukyanchuk, A.M. Shutov, O.A. Raznitsyn, V.P. Tarasov, and S.A. Gudoshnikov, Advanced structure research methods of amorphous Co69Fe4Cr4Si12B11 microwires with giant magnetoimpedance effect: part 1—crystallization kinetics and crystal growth. J. Alloys Compd. 872, 159710 (2021).

    Article  CAS  Google Scholar 

  5. W. Lu, Y. Xu, J. Shi, Y. Song, and X. Li, Soft magnetic properties and giant magnetoimpedance effect in thermally annealed amorphous Co68Fe4Cr3Si15B10 alloy ribbons. J. Alloys Compd. 638, 233 (2015).

    Article  CAS  Google Scholar 

  6. G.V. Kurlyandskaya, A. García-Arribas, J.M. Barandiarán, and E. Kisker, Giant magnetoimpedance strip and coil sensors. Sens. Actuators A Phys. 91(1–2), 116 (2001).

    Article  CAS  Google Scholar 

  7. H. Chiriac, M. Lostun, and T.A. Vri, Magnetization process and domain structure in the near-surface region of conventional amorphous wires. J. Appl. Phys. 109(7), 10 (2011).

    Article  Google Scholar 

  8. M.R. Britel, D. Ménard, L.G. Melo, P. Ciureanu, A. Yelon, R.W. Cochrane, M. Rouabhi, and B. Cornut, Magnetoimpedance measurements of ferromagnetic resonance and antiresonance. Appl. Phys. Lett. 77(17), 2737 (2000).

    Article  CAS  Google Scholar 

  9. S.O. Volchkov, A.A. Pasynkova, M.S. Derevyanko, D.A. Bukreev, N.V. Kozlov, A.V. Svalov, and A.V. Semirov, Magnetoimpedance of CoFeCrSiB ribbon-based sensitive element with FeNi covering: experiment and modeling. Sensors 21(20), 6728 (2021).

    Article  CAS  Google Scholar 

  10. A. Yagmur, S. Sumi, H. Awano, and K. Tanabe, Magnetization-dependent inverse spin Hall effect in compensated ferrimagnet TbCo alloys. Phys. Rev. B 103(21), 2 (2021).

    Article  Google Scholar 

  11. A. Ciuciulkaite, K. Mishra, M.V. Moro, I.A. Chioar, R.M. Rowan-Robinson, S. Parchenko, A. Kleibert, B. Lindgren, G. Andersson, C.S. Davies, A. Kimel, M. Berritta, P.M. Oppeneer, A. Kirilyuk, and V. Kapaklis, Magnetic and all-optical switching properties of amorphous TbxCo100-x alloys. Phys. Rev. Mater. 4(10), 1 (2020).

    Google Scholar 

  12. J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Phys. Condens. Matter 192(1–2), 55 (1993).

    Article  Google Scholar 

  13. M.T. Jilani, W.P. Wen, M.Z.U. Rehman, A.M. Khan, and L.Y. Cheong, Microwave sensor for non-destructive dielectric characterization of biological systems. Int. J. Appl. Electromagn. Mech. 50(2), 353 (2016).

    Article  Google Scholar 

  14. A. Bogner, C. Steiner, S. Walter, J. Kita, G. Hagen, and R. Moos, Planar microstrip ring resonators for microwave-based gas sensing: design aspects and initial transducers for humidity and ammonia sensing. Sensors 17(10), 2422 (2017).

    Article  Google Scholar 

  15. M. Knobel and K.R. Pirota, Giant magnetoimpedance: concepts and recent progress. J. Magn. Magn. Mater. 242–245(Part I), 33 (2002).

    Article  Google Scholar 

  16. A. Shafiei and S. Rajabi, A cobalt-rich eutectic high-entropy alloy in the system Al–Co–Cr–Fe–Ni. Appl. Phys. A Mater. Sci. Process. 125(11), 1–11 (2019).

    Article  CAS  Google Scholar 

  17. K. Pubby, S.S. Meena, S.M. Yusuf, and S. Bindra Narang, cobalt substituted nickel ferrites via Pechini’s sol–gel citrate route: X-band electromagnetic characterization. J. Magn. Magn. Mater. 466(6), 430 (2018).

    Article  CAS  Google Scholar 

  18. C. Nayek, K. Manna, G. Bhattacharjee, P. Murugavel, and I. Obaidat, Investigating size-and temperature-dependent coercivity and saturation magnetization in PEG coated Fe3O4 nanoparticles. Magnetochemistry 3(2), 19 (2017).

    Article  Google Scholar 

  19. R.S. Joshi and P.S.A. Kumar, Magnetic Solid-State Materials, Vol. 4 (Amsterdam: Elsevier Ltd., 2013).

    Google Scholar 

  20. K.D. Sossmeier, G.L. Callegari, L.S. Dorneles, and M. Carara, Wide-range frequency method to obtain the transverse permeability from impedance measurements. J. Magn. Magn. Mater. 320(14), e1 (2008).

    Article  CAS  Google Scholar 

  21. D. Lan, Z. Zhao, Z. Gao, K. Kou, G. Wu, and H. Wu, Porous high entropy alloys for electromagnetic wave absorption. J. Magn. Magn. Mater. 512(5), 167065 (2020).

    Article  CAS  Google Scholar 

  22. M. Halder, S.M. Yusuf, M.D. Mukadam, and K. Shashikala, Magnetocaloric effect and critical behavior near the paramagnetic to ferrimagnetic phase transition temperature in TbCo2-xFex. Phys. Rev. B Condens. Matter Mater. Phys. 81(17), 174402 (2010).

    Article  Google Scholar 

  23. O. Dmytriiev, M. Dvornik, R.V. Mikhaylovskiy, M. Franchin, H. Fangohr, L. Giovannini, F. Montoncello, D.V. Berkov, E.K. Semenova, N.L. Gorn, A. Prabhakar, and V.V. Kruglyak, Calculation of high-frequency permeability of magnonic metamaterials beyond the macrospin approximation. Phys. Rev. B Condens. Matter Mater. Phys. 86(10), 1 (2012).

    Article  Google Scholar 

  24. J. Hu, H. Qin, G. Qi, and M. Jiang, Giant magnetoimpedance in a MnZn ferrite. J. Magn. Magn. Mater. 302(2), 375 (2006).

    Article  CAS  Google Scholar 

  25. G.V. Bida and A.P. Nichipuruk, Coercive force measurements in nondestructive testing. Russ. J. Nondestruct. Test. 36, 707 (2000).

    Article  Google Scholar 

  26. A. Rebello, V.B. Naik, and R. Mahendiran, Large reversible magnetocaloric effect in La0.7xPrxCa0.3MnO3. J. Appl. Phys. 110(1), 1 (2011).

    Article  Google Scholar 

  27. T. Eggers, O. Thiabgoh, S.D. Jiang, H.X. Shen, J.S. Liu, J.F. Sun, H. Srikanth, and M.H. Phan, Tailoring circular magnetic domain structure and high frequency magneto-impedance of melt-extracted Co69.25Fe4.25Si13B13.5 microwires through Nb do**. AIP Adv. 7(5), 056643 (2017).

    Article  Google Scholar 

  28. K. Liu, L. Zhao, P. Klavins, F.E. Osterloh, and H. Hiramatsu, Extrinsic magnetoresistance in magnetite nanoparticles. J. Appl. Phys. 93(10), 7951 (2003).

    Article  CAS  Google Scholar 

  29. R.S. Joshi, M.R.D. Sylvinson, and P.S. Anil Kumar, Anisotropic low field magnetoimpedance in (001) oriented La0.7Sr0.3MnO3 thin films. J. Appl. Phys. 113(17), 12 (2013).

    Article  Google Scholar 

  30. Y.P. Kalmykov, S.V. Titov, D.J. Byrne, W.T. Coffey, M. Zarifakis, and M.H. Al Bayyari, Dipole-dipole and exchange interaction effects on the magnetization relaxation of two macrospins: compared. J. Magn. Magn. Mater. 507(11), 166814 (2020).

    Article  CAS  Google Scholar 

  31. B.R. Pujada, E.H.C.P. Sinnecker, A.M. Rossi, and A.P. Guimarães, Enhanced magnetic anisotropy in granular cobalt–copper alloys. J. Appl. Phys. 93(10), 7217 (2003).

    Article  CAS  Google Scholar 

  32. A. Chanda and R. Mahendiran, Current-driven spin precession in bulk Nd0.6Sr0.4MnO3. J. Phys. Chem. C 124(33), 18226 (2020).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Vishnuvardhan Reddy or Rajeev Shesha Joshi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in execution of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swetha, A.K., Anil Kumar, A., Vishnuvardhan Reddy, C. et al. Low Field Giant Magnetoimpedance Effect in TbCo6.2. J. Electron. Mater. 53, 815–823 (2024). https://doi.org/10.1007/s11664-023-10796-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10796-x

Keywords

Navigation