Log in

Electron Energy Loss Spectra of Mo2TMC2O2 (TM = Ti, Zr and Hf) Ordered Double Transition Metals MXenes

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Using a full potential scheme and the linearized augmented plane wave (LAPW) basis set, the present study deals with the electronic properties and the energy loss near edge structure (ELNES) of a class of MXenes with two transition metal (TM) elements in a fully ordered structure by the density functional theory (DFT). In agreement with other studies, depending on the choice of TM atoms, the range of band gap is estimated to be about 0.120–0.188 eV within the YS-PBE0 approximation. The oxygen K (1 s) edge of O-functionalized ordered double transition metal carbides, Mo2TMC2O2 (TM = Ti, Zr and Hf), has been calculated at orientation-independent conditions. The findings indicate that the spectral features and fine structures in the ELNES spectra are responsive to the presence of different TM transition metals. The energy intervals between the main maxima growth increase, moving from TM = Hf to TM = Zr and then to TM = Ti, , which is a result of the decreased Mo-C and Mo-O atomic bond lengths. The analysis of the unoccupied densities of states (DOS) of Mo2TMC2O2 shows that the source of the principle fine structure at the oxygen 1 s edge is the transition of the core electron to both pz-like and px + py-like states, with a more considerable portion of the px + py states. It is found that, in comparison to available experimental results, the spectral features obtained for the oxygen K edge of Mo2TiC2O2 are in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, and J.N. Coleman, Liquid exfoliation of layered materials. Science 340, 1226419 (2013).

    Article  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  3. A.K. Geim and I.V. Grigorieva, Van der waals heterostructures. Nature 499, 419 (2013).

    Article  CAS  Google Scholar 

  4. M. Dávila, L. **an, S. Cahangirov, A. Rubio, and G.L. Lay, Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicone. New J. Phys. 16, 095002 (2014).

    Article  Google Scholar 

  5. H. Liu, Y. Du, Y. Deng, and D.Y. Peide, Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44, 2732 (2015).

    Article  CAS  Google Scholar 

  6. L. Song, L. Ci, H. Lu, P.B. Sorokin, C. **, J. Ni, A.G. Kvashnin, D.G. Kvashnin, J. Lou, B.I. Yakobson, and P.M. Ajayan, Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209 (2010).

    Article  CAS  Google Scholar 

  7. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M.W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248 (2011).

    Article  CAS  Google Scholar 

  8. M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, and M.W. Barsoum, Two-dimensional transition metal carbides. ACS Nano 6, 1322 (2012).

    Article  CAS  Google Scholar 

  9. M. Naguib, V.N. Mochalin, M.W. Barsoum, and Y. Gogotsi, 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992 (2014).

    Article  CAS  Google Scholar 

  10. P. Urbankowski, B. Anasori, T. Makaryan, D. Er, S. Kota, P.L. Walsh, M. Zhao, V.B. Shenoy, M.W. Barsoum, and Y. Gogotsi, Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 8, 11385 (2016).

    Article  CAS  Google Scholar 

  11. A. Champagne and J.C. Charlier, Physical properties of 2D MXenes: from a theoretical perspective. J. Phys. Mater. 3, 032006 (2021).

    Article  Google Scholar 

  12. M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman, Y. Gogotsi, and M.W. Barsoum, New two-dimensional niobium and vanadium carbides as promising materials for Li-Ion batteries. J. Am. Chem. Soc. 135, 15966 (2013).

    Article  CAS  Google Scholar 

  13. N. Li, Z. Zeng, Y. Zhang, X. Chen, Z. Kong, Arramel, Y. Li, P. Zhang, and B.S. Nguyen, Double transition metal carbides MXenes (D-MXenes) as Promising electrocatalysts for hydrogen reduction reaction: ab initio calculations. ACS Omega 6, 23676 (2021).

    Article  CAS  Google Scholar 

  14. M. Han, C.E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori, C.M. Koo, G. Friedman, and Y. Gogotsi, Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14, 5008 (2020).

    Article  CAS  Google Scholar 

  15. M. Khazaei, A. Ranjbar, M. Arai, T. Sasaki, and S. Yunoki, Electronic properties and applications of MXenes: a theoretical review. J. Mater. Chem. C 5, 2488 (2017).

    Article  CAS  Google Scholar 

  16. H. Kim and H.N. Alshareef, MXetronics: MXene-enabled electronic and photonic devices. ACS Mater. Lett. 2, 55 (2019).

    Article  Google Scholar 

  17. M. Khazaei, A. Ranjbar, K. Esfarjani, D. Bogdanovski, R. Dronskowski, and S. Yunoki, Insights into exfoliation possibility of MAX phases to MXenes. Phys. Chem. Chem. Phys. 20, 8579 (2018).

    Article  CAS  Google Scholar 

  18. W.W. Sun, Y. **e, and P.R.C. Kent, Double transition metal MXenes with wide band gaps and novel magnetic properties. Nanoscale 10, 11962 (2018).

    Article  CAS  Google Scholar 

  19. H.Q. Chang, G.H. Zhang, and K.C. Chou, Topochemical synthesis of two-dimensional molybdenum carbide (Mo2C) via Na2CO3-assited carbothermal reduction of 2H-MoS2. Mater. Chem. Phys. 244, 122713 (2020).

    Article  CAS  Google Scholar 

  20. B. Ding, W.J. Ong, J. Jiang, X. Chen, and N. Li, Uncovering the electrochemical mechanisms for hydrogen evolution reaction of heteroatom doped M2C MXene (M = Ti, Mo). Appl. Surf. Sci. 500, 143987 (2020).

    Article  CAS  Google Scholar 

  21. B. Anasori, M.R. Lukatskaya, and Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater 2, 16098 (2017).

    Article  CAS  Google Scholar 

  22. Y. Yao, S. Wang, X. Jia, J. Yang, Y. Li, J. Liao, and H. Song, Freestanding sandwich-like hierarchically TiS2-TiO2/Mxene bi-functional interlayer for stable Li-S batteries. Carbon 188, 533 (2022).

    Article  CAS  Google Scholar 

  23. L. Dong, H. Kumar, B. Anasori, Y. Gogotsi, and V.B. Shenoy, Rational design of two-dimensional metallic and semiconducting spintronic materials based on ordered double-transition-metal MXenes. J. Phys. Chem. Lett. 8, 422 (2017).

    Article  CAS  Google Scholar 

  24. O. Mashtalir, M. Naguib, B. Dyatkin, Y. Gogotsi, and M.W. Barsoum, Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid. Mater. Chem. Phys. 139, 147 (2013).

    Article  CAS  Google Scholar 

  25. M. Naguib and Y. Gogotsi, Synthesis of two-dimensional materials by selective extraction. Acc. Chem. Res. 48, 128 (2015).

    Article  CAS  Google Scholar 

  26. Y. Wei, P. Zhang, R.A. Soomro, Q. Zhu, and B. Xu, Advances in the synthesis of 2D MXenes. Adv. Mater. 33, 2103148 (2021).

    Article  CAS  Google Scholar 

  27. B. Anasori, M. Dahlqvist, J. Halim, E.J. Moon, J. Lu, B.C. Hosler, E.N. Caspi, S.J. May, L. Hultman, P. Eklund, J. Rosen, and M.W. Barsoum, Experimental and theoretical characterization of ordered MAX phases Mo2TiAlC2 and Mo2Ti2AlC3. J. Appl. Phys. 118, 094304 (2015).

    Article  Google Scholar 

  28. Y. Gogotsi and B. Anasori, The rise of MXenes. ACS Nano 13, 8491 (2019).

    Article  CAS  Google Scholar 

  29. B. Anasori, Y. **e, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R.C. Kent, Y. Gogotsi, and M.W. Barsoum, Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9, 9507 (2015).

    Article  CAS  Google Scholar 

  30. B. Anasori, C. Shi, E.J. Moon, Y. **e, C.A. Voigt, P.R. Kent, S.J. May, S.J. Billinge, M.W. Barsoum, and Y. Gogotsi, Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers. Nanoscale Horiz. 1, 227 (2016).

    Article  CAS  Google Scholar 

  31. C. Si, K.H. **, J. Zhou, Z. Sun, and F. Liu, Large-gap quantum spin hall state in MXenes: d-Band topological order in a triangular lattice. Nano Lett. 16, 6584 (2016).

    Article  CAS  Google Scholar 

  32. M. Khazaei, A. Ranjbar, M. Arai, and S. Yunoki, Topological insulators in the ordered double transition metals M2′M″C2 MXenes (M′=Mo, W; M″=Ti, Zr, Hf). Phys. Rev. B 94, 125152 (2016).

    Article  Google Scholar 

  33. L. Li, Lattice dynamics and electronic structures of Ti3C2O2 and Mo2TiC2O2 (MXenes): the effect of Mo substitution. Comput. Mater. Sci. 124, 8 (2016).

    Article  CAS  Google Scholar 

  34. H. Weng, A. Ranjbar, Y. Liang, Z. Song, M. Khazaei, S. Yunoki, M. Arai, Y. Kawazoe, Z. Fang, and X. Dai, Large-gap two-dimensional topological insulator in oxygen functionalized MXene. Phys. Rev. B 92, 075436 (2015).

    Article  Google Scholar 

  35. H. Fashandi, V. Ivády, P. Eklund, A.L. Spetz, M.I. Katsnelson, and I.A. Abrikosov, Dirac points with giant spin-orbit splitting in the electronic structure of two-dimensional transition-metal carbides. Phys. Rev. B 92, 155142 (2015).

    Article  Google Scholar 

  36. H. Kim, B. Anasori, Y. Gogotsi, and H.N. Alshareef, Thermoelectric properties of two-dimensional molybdenum-based MXenes. Chem. Mater. 29, 6472 (2017).

    Article  CAS  Google Scholar 

  37. J.L. Hart, K. Hantanasirisakul, A.C. Lang, B. Anasori, D. Pinto, Y. Pivak, J.T. van Omme, S.J. May, Y. Gogotsi, and M.L. Taheri, Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 10, 522 (2019).

    Article  CAS  Google Scholar 

  38. J. Halim, K.M. Cook, M. Naguib, P. Eklund, Y. Gogotsi, J. Rosen, and M.W. Barsoum, X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 362, 406 (2016).

    Article  CAS  Google Scholar 

  39. J. Halim, K.M. Cook, P. Eklund, J. Rosen, and M.W. Barsoum, XPS of cold pressed multilayered and freestanding delaminated 2D thin films of Mo2TiC2Tz and Mo2Ti2C3Tz (MXenes). Appl. Surf. Sci. 494, 1138 (2019).

    Article  CAS  Google Scholar 

  40. J. Halim, S. Kota, M.R. Lukatskaya, M. Naguib, M.Q. Zhao, E.J. Moon, J. Pitock, J. Nanda, S.J. May, Y. Gogotsi, and M.W. Barsoum, Synthesis and Characterization of 2D molybdenum carbide (MXene). Adv. Funct. Mater. 26, 3118 (2016).

    Article  CAS  Google Scholar 

  41. G. Li, V. Natu, T. Shi, M.W. Barsoum, and L.V. Titova, Two-dimensional MXenes Mo2Ti2C3Tz and Mo2TiC2Tz: microscopic conductivity and dynamics of photoexcited carriers. ACS Appl. Energy Mater. 3, 1530 (2020).

    Article  CAS  Google Scholar 

  42. R.F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd ed., (New York: Plenum, 1996).

    Book  Google Scholar 

  43. C. Colliex and B. Jouffrey, Diffusion inelastique des electrons dans un solide par excitation de niveaux atomiques profonds. Philos. Mag. 25, 491 (1972).

    Article  CAS  Google Scholar 

  44. G.A. Botton, G.Y. Guo, W.M. Temmerman, and C.J. Humphreys, Experimental and theoretical study of the electronic structure of Fe Co, and Ni aluminides with the B2 structure. Phys. Rev. B 54, 1682 (1996).

    Article  CAS  Google Scholar 

  45. T. Mizoguchi, I. Tanaka, S. Yoshioka, M. Kunisu, T. Yamamoto, and W.Y. Ching, First-principles calculations of ELNES and XANES of selected wide-gap materials: dependence on crystal structure and orientation. Phys. Rev. B 70, 045103 (2004).

    Article  Google Scholar 

  46. D. Magne, V. Mauchamp, S. Célérier, P. Chartier, and T. Cabioc’h, Site-projected electronic structure of two-dimensional Ti3C2 MXene: the role of the surface functionalization groups. Phys. Chem. Chem. Phys. 18, 30946 (2016).

    Article  CAS  Google Scholar 

  47. S. Molaeipour, M. Dadsetani, and R. Nejatipour, Electron energy-loss spectra of functionalized titanium and zirconium MXene monolayers, including excitonic effects. J. Phys. Chem. Solids 169, 110881 (2022).

    Article  CAS  Google Scholar 

  48. R. Momeni Feili, M. Dadsetani, R. Nejatipour, and A. Ebrahimian, Electron energy loss structures of terminated scandium and hafnium mxene monolayers from first-principles calculations. J. Electron. Mater. 49, 2502 (2020).

    Article  CAS  Google Scholar 

  49. Z. Derikvandi, M. Dadsetani, and R. Nejatipour, Carbon K edge spectra of functionalized molybdenum-based MXenes, Mo2CT2 (T = F, OH and O), from first-principles calculations. Micron 172, 103488 (2023).

    Article  CAS  Google Scholar 

  50. P. Hohenberg and W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, 864 (1964).

    Article  Google Scholar 

  51. W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, 1133 (1965).

    Article  Google Scholar 

  52. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasicka, and J. Luitz, WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna, Austria: Vienna University of Technology, 2001).

    Google Scholar 

  53. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  54. H. Yukawa, On the interaction of elementary particles. I. Proc. Phys. Math. Soc. Jpn. 17, 48 (1935).

    Google Scholar 

  55. F. Tran and P. Blaha, Implementation of screened hybrid functionals based on the Yukawa potential within the LAPW basis set. Phys. Rev. B 83, 235118 (2011).

    Article  Google Scholar 

  56. M. Nelhiebel, P.H. Louf, P. Scattscneider, P. Blaha, K. Schwarz, and B. Jouffrey, Theory of orientation-sensitive near-edge fine-structure core-level spectroscopy. Phys. Rev. B 59, 12807 (1999).

    Article  CAS  Google Scholar 

  57. M. Inokuti, Inelastic collisions of fast charged particles with atoms and molecules—the Bethe theory revisited. Rev. Mod. Phys. 43, 297 (1971).

    Article  CAS  Google Scholar 

  58. H.A. Bethe, Theory of the passage of fast corpuscular rays through matter. Ann. Phys. 5, 325 (1930).

    Article  CAS  Google Scholar 

  59. C. Hébert-Souche, P.-H. Louf, P. Blaha, M. Nelhiebel, J. Luitz, P. Schattschneider, K. Schwarz, and B. Jouffrey, The orientation-dependent simulation of ELNES. Ultramicroscopy 83, 9 (2000).

    Article  Google Scholar 

  60. A.J. Scott, R. Brydson, M. MacKenzie, and A. Craven, Theoretical investigation of the ELNES of transition metal carbides for the extraction of structural and bonding information. Phys. Rev. B 63, 1245105 (2001).

    Article  Google Scholar 

  61. M. Khazaei, M. Arai, T. Sasaki, C.Y. Chung, N.S. Venkataramanan, M. Estili, Y. Sakka, and Y. Kawazoe, Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 23, 2185 (2013).

    Article  CAS  Google Scholar 

  62. M. Ashton, K. Mathew, R.G. Hennig, and S.B. Sinnott, Predicted surface composition and thermodynamic stability of mxenes in solution. J. Phys. Chem. C 120, 3550 (2016).

    Article  CAS  Google Scholar 

  63. A. Mishra, P. Srivastava, A. Carreras, I. Tanaka, H. Mizuseki, K.R. Lee, and A.K. Singh, Atomistic origin of phase stability in oxygen-functionalized MXene: a comparative study. J. Phys. Chem. C 121, 18947 (2017).

    Article  CAS  Google Scholar 

  64. J.T. Titantah and D. Lamoen, Energy-loss near-edge structure changes with bond length in carbon systems. Phys. Rev. B 72, 193104 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Dadsetani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derikvandi, Z., Dadsetani, M. Electron Energy Loss Spectra of Mo2TMC2O2 (TM = Ti, Zr and Hf) Ordered Double Transition Metals MXenes. J. Electron. Mater. 52, 8065–8075 (2023). https://doi.org/10.1007/s11664-023-10722-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10722-1

Keywords

Navigation