Log in

Effects of Bottom Electrode Materials on the Resistive Switching Characteristics of HfO2-Based RRAM Devices

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, we present the results of our systematic investigations of the resistive switching characteristics of HfO2-based metal–insulator–metal structures using four different metal bottom electrode (BE) materials, namely Au, Al, Pt and Cu. Ag is used as the top electrode for all these resistive random access memory devices. On one hand, Au and Pt show lower set and reset voltages, whereas the Pt electrode has a higher resistance ratio (Roff/Ron) ~ 105). On the other hand, Al and Cu exhibit multilevel switching during the reset process. Thus, the oxygen affinity of the BE is expected to result in the formation of an interfacial layer with the active (HfO2) layer. Furthermore, conduction mechanisms have been studied for the various regions in the high resistance state (HRS) curves of all these devices. It is found that the Poole–Frenkel effect is more dominant at higher voltages (> 1 V) in the HRS curve. Therefore, it is essential to elucidate the appropriate BE material and optimum active switching layer to understand the conduction mechanisms for the resistive switching phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. Ielmini, Resistive switching memories based on metal oxides: mechanisms, reliability and scaling. Semicond. Sci. Technol. 31, 1 (2016).

    Article  Google Scholar 

  2. F. Palumbo, Formation and characterization of filamentary current paths in HfO2based resistive switching structures. IEEE Electron. Dev. Lett. 33, 1057 (2012).

    Article  CAS  Google Scholar 

  3. A. Sawa, Resistive switching in transition metal. Mater. Today 11, 28 (2008).

    Article  CAS  Google Scholar 

  4. D. Ielmini, Brain-inspired computing with resistive switching memory (RRAM): devices, synapses and neural networks. Microelectron. Eng. 190, 44 (2018).

    Article  CAS  Google Scholar 

  5. K. Zhang, Embedded Memories for Nano-scale VLSIs (Springer, 2009).

    Book  Google Scholar 

  6. R. Waser and M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6, 833 (2007).

    Article  CAS  Google Scholar 

  7. C. Vallée, P. Gonon, C. Jorel, F. El Kamel, M. Mougenot, and V. Jousseaume, High κ for MIM and RRAM applications: impact of the metallic electrode and oxygen vacancies. Microelectron. Eng. 86, 1774 (2009).

    Article  Google Scholar 

  8. J. Arya Lekshmi, T. Nandha Kumar, and K.B. **esh, The effect of the top electrode on the switching behavior of bipolar Al2O3/ZnO RRAM. Microelectron. Eng. 250, 111637 (2021).

    Google Scholar 

  9. S.R. Bradley, K.P. McKenna, and A.L. Shluger, The behavior of oxygen at metal electrodes in HfO2 based resistive switching devices. Microelectron. Eng. 109, 346 (2013).

    Article  CAS  Google Scholar 

  10. D.C. Kim, S. Seo, S.E. Ahn, D.S. Suh, M.J. Lee, B.H. Park, I.K. Yoo, I.G. Baek, H.J. Kim, K. Yim, J.E. Lee, S.O. Park, H.S. Kim, U.I. Chung, J.T. Moon, and B.I. Ryu, Electrical observations of filamentary conductions for the resistive memory switching in NiO films. Appl. Phys. Lett. 88, 202102 (2006).

    Article  Google Scholar 

  11. U. Russo, C. Cagli, S. Spiga, E. Cianci, and D. Ielmini, Impact of electrode materials on resistive-switching memory programming. IEEE Electron Device Lett. 30, 817 (2009).

    Article  CAS  Google Scholar 

  12. S. Kim and Y.K. Choi, A comprehensive study of the resistive switching mechanism in Al/TiOx/TiO2/Al-structured RRAM. IEEE Trans. Electron Devices 56, 3049 (2009).

    Article  CAS  Google Scholar 

  13. L. Zhang, R. Huang, M. Zhu, S. Qin, Y. Kuang, D. Gao, C. Shi, and Y. Wang, Unipolar TaOx-based resistive change memory realized with electrode engineering. IEEE Electron Device Lett. 31, 966 (2010).

    Article  Google Scholar 

  14. W.C. Chien, E.K. Lai, K.P. Chang, C.H. Yeh, M.H. Hsueh, Y.-D. Yao, T. Luoh, S.H. Hsieh, T.H. Yang, K.C. Chen, Y.C. Chen, K.Y. Hsieh, R. Liu, C.Y. Lu, in Unipolar Switching Characteristics for Self-Aligned WOx Resistance RAM (R-RAM). Proceedings of the International Symposium on VLSI Technology, Systems and Applications, vol. 144 (2008)

  15. C.Y. Lin, C.Y. Wu, C.Y. Wu, T.C. Lee, F.L. Yang, C. Hu, and T.Y. Tseng, Effect of top electrode material on resistive switching properties of ZrO2 film memory devices. IEEE Electron Devices Lett. 28, 366 (2007).

    Article  CAS  Google Scholar 

  16. K. Szot, W. Speier, G. Bihlmayer, and R. Waser, Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater 5, 312 (2006).

    Article  CAS  Google Scholar 

  17. H. Akinaga and H. Shima, Resistive random access memory (ReRAM) based on metal oxides. Proc. IEEE 98, 2237 (2010).

    Article  CAS  Google Scholar 

  18. V. Sriraman, Z. Chen, X. Li, X. Wang, N. Singh, and G.Q. Lo, HfO2 based resistive switching non-volatile memory (RRAM) and its potential for embedded applications. Int. Proc. Comput. Sci. Inf. Technol. 32, 101 (2012).

    Google Scholar 

  19. J.P. Lehan, Y. Mao, B.G. Bovard, and H.A. Macleod, Optical and microstructural properties of hafnium dioxide thin films. Thin Solids Films 203, 227 (1991).

    Article  CAS  Google Scholar 

  20. N. Arun, L.D. Varma Sangani, K. Vinod Kumar, A. Mangababu, M. Ghanashyam Krishna, A.P. Pathak, and S.V.S. Nageswara Rao, Effects of swift heavy ion irradiation on the performance of HfO2based resistive random access memory devices. J. Mater. Sci. Mater Electron 32, 2973 (2021).

    Article  CAS  Google Scholar 

  21. P. Torchio, A. Gatto, M. Alvisi, G. Albrand, N. Kaiser, and C. Amra, High-reflectivity HfO2/SiO2 ultraviolet mirrors. Appl. Opt. 41, 3256 (2002).

    Article  CAS  Google Scholar 

  22. D.A. Neumayer and E. Cartier, Materials characterization of ZrO2–SiO2 and HfO2–SiO2 binary oxides deposited by chemical solution deposition. J. Appl. Phys. 90, 1801 (2001).

    Article  CAS  Google Scholar 

  23. J. Aarik, A. Aidla, H. Mändar, V. Sammelselg, and T. Uustare, Texture development in nanocrystalline hafnium dioxide thin films grown by atomic layer deposition. J. Cryst. Growth 220, 105 (2000). https://doi.org/10.1016/S0022-0248(00)00831-9.

    Article  CAS  Google Scholar 

  24. S. Ferrari, M. Modreanu, G. Scarel, and M. Fanciulli, X-Ray reflectivity and spectroscopic ellipsometry as metrology tools for the characterization of interfacial layers in high-κ materials. Thin Solid Films 450, 124 (2004).

    Article  CAS  Google Scholar 

  25. M. Alvisi, S. Scaglione, S. Martinelli, A. Rizzo, and L. Vasanelli, Structural and optical modification in hafnium oxide thin films related to the momentum parameter transferred by ion beam assistance. Thin Solid Films 354, 19 (1999).

    Article  CAS  Google Scholar 

  26. M. Lanza, R. Waser, J. Daniele Ielmini, J. Yang, L. Goux, J. Suñe, A.J. Kenyon, A. Mehonic, S. Spiga, V. Rana, S. Wiefels, S. Menzel, I. Valov, M.A. Villena, X. Enrique Miranda, F.C. **g, M.B. Gonzalez, F. Aguirre, F. Palumbo, K. Zhu, J.B. Roldan, F.M. Puglisi, L. Larcher, T.H. Hou, T. Prodromakis, Y. Yang, P. Huang, T. Wan, Y. Chai, K.L. Pey, N. Raghavan, S. Dueñas, T. Wang, Q. **a, and S. Pazos, Standards for the characterization of endurance in resistive switching devices. ACS Nano 15, 17214 (2021).

    Article  CAS  Google Scholar 

  27. F. Zahoor, T.Z.A. Zulkifli, and F.A. Khanday, Resistive random access memory (rram): an overview of materials, switching mechanism, performance, multilevel cell (mlc) storage, modeling, and applications. Nanoscale Res. Lett. 15, 1 (2020).

    Google Scholar 

  28. C.W. Hsu, I.T. Wang, C.L. Lo, M.C. Chiang, W.Y. Jang, C.H. Lin, T.H. Hou, in Self-rectifying bipolar TaOx/TiO2 RRAM with superior endurance over 1012 cycles for 3D high-density storage-class memory. 2013 Symposium on VLSI Technology. IEEE. (2013), pp. T166–T167

  29. U. Chand, C.Y. Huang, J.H. Jieng, W.Y. Jang, C.H. Lin, and T.Y. Tseng, Suppression of endurance degradation by utilizing oxygen plasma treatment in HfO2 resistive switching memory. Appl. Phys Lett 106, 153502 (2015).

    Article  Google Scholar 

  30. H.S.P. Wong, H.Y. Lee, S. Yu, Y.S. Chen, Y. Wu, P.S. Chen, L. Byoungil, T.C. Frederick, and T. Ming-**n, Metal–oxide RRAM. Proc. IEEE 100, 1951 (2012).

    Article  CAS  Google Scholar 

  31. J. Li, Y. Kim, D. Kong, K. Cheng, S. -C. Seo, C. Robinson, N. Saulnier, R. R. Robison, A. J. Varghese, I. Ahsan, R. Muralidhar, T. Ando, V. Narayanan, (2020) in Bottom electrode properties and electrical field cycling effects on HfOx based resistive switching memory device. ISTFA- 2020. ASM International, (2020), pp.53–56

  32. W. Zhang, J. Tang, B. Gao, W. Sun, W. Liu, K. Wang, W. Wu, H. Qian, H. Wu, in Impact of bottom electrode roughness on the analog switching characteristics in nanoscale RRAM array. Device Research Conference (DRC), (2021)

  33. Y. Duan, H. Gao, M. Qian, Y. Sun, Wu. Shuliang, J. Guo, M. Yang, X. Ma, and Y. Yang, Influence of non-inert electrode thickness on the performance of complementary resistive switching in AlOxNy -based RRAM. Appl. Phys. Lett. 121, 073502 (2022).

    Article  CAS  Google Scholar 

  34. D.S. Kuzmichev, A.A. Chouprik, A.S. Slavich, R.V. Kirtaev, and D.V. Negrov, Bottom-electrode nanoasperities as a root of the high-performance resistive-switching effect. Phys. Status Solidi (RRL) 15, 2000461 (2021).

    Article  CAS  Google Scholar 

  35. A.A. Koroleva, A.G. Chernikova, A.A. Chouprik, E.S. Gornev, A.S. Slavich, R.R. Khakimov, E.V. Korostylev, C.S. Hwang, and A.M. Markeev, Impact of the atomic layer-deposited ru electrode surface morphology on resistive switching properties of TaOx-based memory structures. ACS Appl. Mater. Interfaces 12, 55331 (2020).

    Article  CAS  Google Scholar 

  36. M.Y. Zhuk, N.A. Sizykh, D.S. Kuzmichev, A.A. Chouprik, S.S. Zarubin, E.S. Gornev, and A.V. Zenkevich, Effect of electrode nanopatterning on the functional properties of Ta/TaOx/Pt resistive memory devices. ACS Appl. Nano Mater. 5, 8594 (2022).

    Article  CAS  Google Scholar 

  37. T. Cabout, J. Buckley, C. Cagli, V. Jousseaume, J.F. Nodin, B. de Salvo, M. Bocquet, and C. Muller, Role of Ti and Pt electrodes on resistance switching variability of HfO2based resistive random access memory. Thin Solid Films 533, 19 (2013).

    Article  CAS  Google Scholar 

  38. B. Traoré, P. Blaise, E. Vianello, L. Perniola, B. De Salvo, and Y. Nishi, HfO2Based RRAM: electrode effects, Ti/HfO2 interface, charge injection, and oxygen (O) defects diffusion through experiment and Ab initio calculations. IEEE Trans. Electron Devices 63, 360 (2016).

    Article  Google Scholar 

  39. M. Akbari, M.-K. Kim, D. Kim, and J.-S. Lee, Reproducible and reliable resistive switching behaviors of AlOx/HfOx bilayer structures with Al electrode by atomic layer deposition. RSC Adv. 7, 16704 (2017).

    Article  CAS  Google Scholar 

  40. M. Dhanunjaya, D.K. Avasthi, A.P. Pathak, S.A. Khan, and S.V.S. Nageswara Rao, Grain fragmentation and phase transformations in hafnium oxide induced by swift heavy ion irradiation. Appl. Phys. A 124, 587 (2018).

    Article  Google Scholar 

  41. E. Hildebrandt, J. Kurian, M.M. Müller, T. Schroeder, H.-J. Kleebe, and L. Alff, Controlled oxygen vacancy induced p-type conductivity in HfO2-x thin films. Appl. Phys. Lett. 99, 112902 (2011).

    Article  Google Scholar 

  42. H.L. Skriver and N.M. Rosengaard, Surface energy and work function of elemental metals. Phys. Rev. B 46, 7157 (1992).

    Article  CAS  Google Scholar 

  43. C. Vallée, P. Gonon, C. Jorel, and F. El Kamel, Electrode oxygen-affinity influence on voltage nonlinearities in high-k metal-insulator-metal capacitors. Appl. Phys. Lett. 96, 233504 (2010).

    Article  Google Scholar 

  44. L.D. Varma Sangani, C.H. Ravi Kumar, and M. Ghanashyam Krishna, Interfacial electrode-driven enhancement of the switching parameters of a copper oxide-based resistive random-access memory device. J. Electron. Mater. 45, 322 (2016).

    Article  Google Scholar 

  45. J.H. Yoon, K.M. Kim, J.S. Song, J.Y. Seok, K.J. Yoon, D.E. Kwon, T.H. Park, Y.J. Kwon, X. Shao, and C.S. Hwang, Pt/Ta2O5/HfO2−x/Ti resistive switching memory competing with multilevel NAND flash. Adv. Mater. 27, 3811 (2015).

    Article  CAS  Google Scholar 

  46. Y.C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano Lett. 9, 1636 (2009).

    Article  CAS  Google Scholar 

  47. J. Kang and I.S. Park, Asymmetric current behavior on unipolar resistive switching in Pt/HfO2/Pt resistor with symmetric electrodes. IEEE Trans. Electron Devices 63, 2380 (2016).

    Article  CAS  Google Scholar 

  48. N. Arun, K. Vinod Kumar, A. Mangababu, S.V.S. Nageswara Rao, and A.P. Pathak, Influence of the bottom metal electrode and gamma irradiation effects on the performance of HfO2based RRAM devices. Radiat. Eff. Defects Solids 174, 66 (2019).

    Article  CAS  Google Scholar 

  49. S.K. Vishwanath, H. Woo, and S. Jeon, Enhancement of resistive switching properties in Al2O3 bilayer-based atomic switches: multilevel resistive switching. Nanotechnology 29, 235202 (2018).

    Article  Google Scholar 

  50. C. Li, F. Wang, Hu. Kai, W. Li, J. Zhao, T. Ren, Z. Song, and K. Zhang, Ultralow power switching of Ta2O5/AlOx bilayer synergistic resistive random access memory. J. Phys. D: Appl. Phys. 53, 335104 (2020).

    Article  CAS  Google Scholar 

  51. T. Nagata, M. Haemori, Y. Yamashita, H. Yoshikawa, Y. Iwashita, K. Kobayashi, and T. Chikyow, Oxygen migration at Pt/HfO2/Pt interface under bias operation. App. Phy. Lett 97, 082902 (2010).

    Article  Google Scholar 

  52. J.J. Yang, F. Miao, M.D. Pickett, D.A.A. Ohlberg, D.R. Stewart, C.N. Lau, and R.S. Williams, The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 20, 215201 (2009).

    Article  Google Scholar 

  53. C. Yoshida, K. Kinoshita, T. Yamasaki, and Y. Sugiyama, Direct observation of oxygen movement during resistance switching in NiO/Pt film. Appl. Phys. Lett. 93, 042106 (2008).

    Article  Google Scholar 

  54. H. Shima, F. Takano, H. Muramatsu, M. Yamazaki, H. Akinaga, and A. Kogure, Local chemical state change in Co–O resistance random access memory. Phys. Status Solidi RRL 2, 99 (2008).

    Article  CAS  Google Scholar 

  55. S. Larentis, C. Cagli, F. Nardi, and D. Ielmini, Filament diffusion model for simulating reset and retention processes in RRAM. Microelectron. Eng. 88, 1119 (2011).

    Article  CAS  Google Scholar 

  56. L.D. SrinuRowtu, V. Sangani, and M. Ghanashyam Krishna, The role of work function and band gap in resistive switching behaviour of ZnTe thin films. J. Electron. Mater. 47, 1620 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

N. Arun thanks UGC-NET for providing the fellowship (JRF and SRF) and NASI for RA. APP thanks the National Academy of Sciences, India, Prayagraj (Allahabad), for the award of NASI Sr Scientist Platinum Jubilee Fellowship. We thank IUAC, New Delhi, for financial support and for access to its facilities. Special thanks to Dr. Sunil Ojha, IUAC, for his support in performing the RBS studies and for discussions. We thank the Centre for Nanotechnology (CFN), University of Hyderabad, for providing necessary characterization facilities. We also thank DST-PURSE (India), UGC-NRC and UGCSAP- DRS-I, CASEST, SOP, UOH programmes for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Pathak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arun, N., Nageswara Rao, S.V.S. & Pathak, A.P. Effects of Bottom Electrode Materials on the Resistive Switching Characteristics of HfO2-Based RRAM Devices. J. Electron. Mater. 52, 1541–1551 (2023). https://doi.org/10.1007/s11664-022-10136-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10136-5

Keywords

Navigation