Log in

Studies of Scattering Mechanisms in Multilayer HgCdTe Heterostructures

  • 2021 U.S. Workshop on Physics and Chemistry of II-VI Materials
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An analysis of carrier transport is performed on multilayer HgCdTe heterostructures with complex composition and do** profiles by combining models for carrier scattering with multilayer modeling of the transport properties obtained through resistivity and Hall measurements of the entire multilayer stack. The analysis is applied to the study of carrier scattering in low-doped HgCdTe multilayers grown on (211) CdZnTe substrates by molecular beam epitaxy. The predictive capability of the modeling and its usefulness as a form of rapid and accurate feedback from simple Hall effect measurements are highlighted. The ability to routinely produce HgCdTe films with free carrier concentration (ndna) in the range of 1013–1014 cm−3 while preserving carrier mobility with respect to higher concentrations is evident from the dependence of mobility on carrier density for fixed HgCdTe compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T. Ashley, and C.T. Elliott, Nonequilibrium Devices for Infrared Detection. Electron. Lett. 21, 451 (1985).

    Article  CAS  Google Scholar 

  2. T. Ashley, C. T. Elliott, and A. M. White, Non-equilibrium devices for infrared detection, in Proc SPIE 0572 infrared technology XI. (1985)

  3. D. Lee, M. Carmody, E. Piquette, P. Dreiske, A. Chen, A. Yulius, D. Edwall, S. Bhargava, M. Zandian, and W.E. Tennant, High-Operating Temperature HgCdTe: A Vision for the Near Future. J. Electron. Mater. 45, 4587 (2016).

    Article  CAS  Google Scholar 

  4. L. Wang, A. Wang, and S. Price, Accurate Determination of the Matrix Composition Profile of Hg1–xCdxTe by Secondary Ion Mass Spectrometry. J. Electron. Mater. 36, 8 (2007).

    Google Scholar 

  5. Private communication with A. Wang at evans analytical group.

  6. J. Antoszewski, L. Faraone, I. Vurgaftman, J.R. Meyer, and C.A. Hoffman, Application of Quantitative Mobility-Spectrum Analysis to Multilayer HgCdTe Structures. J. Electron. Mater. 33, 673 (2004).

    Article  CAS  Google Scholar 

  7. R. Petriz, Theory of an Experiment for Measuring the Mobility and Density of Carriers in the Space-Charge Region of a Semiconductor Surface. Phys. Rev. 110, 1254 (1958).

    Article  Google Scholar 

  8. O. Bierwagen, S. Choi, and J.S. Speck, Hall and Seebeck profiling: Determining Surface, Interface, and bulk Electron Transport Properties in Unintentionally Doped InN Phys. Rev. B 85, 165205 (2012).

    Article  Google Scholar 

  9. P.S. Wijewarnasuriya, M.D. Langer, S. Sivananthan, and J.P. Faurie, Analysis of Low Do** Limitation in Molecular Beam Epitaxially Grown HgCdTe(211)B Epitaxial Layers. J. Electron. Mater. 24, 1211–1218 (1995).

    Article  CAS  Google Scholar 

  10. D.D. Edwall, M. Zandian, A.C. Chen, and J.M. Arias, Improving Material Characteristics and Reproducibility of MBE HgCdTe. J. Electron. Mater. 26, 493 (1997).

    Article  CAS  Google Scholar 

  11. G.L. Hansen, J.L. Schmidt, and T.N. Casselman, Energy Gap Versus alloy Composition and Temperature in Hg1−xCdxTe. J. Appl. Phys. 53, 7099 (1982).

    Article  CAS  Google Scholar 

  12. S.L. Price and P.R. Boyd, Overview of Compositional Measurement Techniques for HgCdTe with Emphasis on IR Transmission, Energy Dispersive X-Ray Analysis and Optical Reflectance. Semicond. Sci. Technol. 8, 842 (1993).

    Article  CAS  Google Scholar 

  13. K. Moazzami, D. Liao, J.D. Phillips, D.L. Lee, M. Carmody, M. Zandian, and D.D. Edwall, Optical Absorption Properties of HgCdTe Epilayers with Uniform Composition. J. Electron. Mater. 32, 646 (2003).

    Article  CAS  Google Scholar 

  14. M. Daraselia, M. Carmody, M. Zandian, and J.M. Arias, Improved Model for the Analysis of FTIR Transmission Spectra from Multilayer HgCdTe Structures. J. of Electron. Mater. 33, 761 (2004).

    Article  CAS  Google Scholar 

  15. N.T. Gordon, S. Barton, P. Capper, C.L. Jones, and N. Metcalfe, Electron Mobility in p-type Epitaxially Grown Hg1-xCdxTe. Semicond. Sci. Technol. 8, S221 (1993).

    Article  CAS  Google Scholar 

  16. S.D. Yoo and K.D. Kwack, Theoretical Calculation of Electron Mobility in HgCdTe. J. Appl. Phys. 81, 2 (1997).

    Google Scholar 

  17. W. Scott, Electron Mobility in Hg1−xCdxTe. J. Appl. Phys. 43, 1055 (1972).

    Article  CAS  Google Scholar 

  18. G.L. Hansen and J.L. Schmit, Calculation of Intrinsic Carrier Concentration in Hg1−xCdxTe. J. Appl. Phys. 54, 1639 (1983).

    Article  CAS  Google Scholar 

  19. See P. Capper, Properties of Narrow Gap Cadmium-based Compounds, London and the references therein. (1994)

  20. M. Lundstrom, Fundamentals of Carrier Transport, 2nd Edn. (Cambridge, 2009)

Download references

Acknowledgments

The authors acknowledge and greatly appreciate the support of this work by their colleagues at Teledyne Scientific and Imaging. The authors acknowledge and thank Alice Wang and Peter Zhao at Evans Analytical Group (now Eurofins EAG Materials Science) for performing SIMS measurements and useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Shojaei.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shojaei, B., Wang, S., Gruenewald, J. et al. Studies of Scattering Mechanisms in Multilayer HgCdTe Heterostructures. J. Electron. Mater. 51, 4714–4720 (2022). https://doi.org/10.1007/s11664-022-09802-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09802-5

Keywords

Navigation