Log in

Plasma Treatment for Surface Stabilization in InAs/GaSb Type-II Superlattice LWIR and VLWIR Photodetectors

  • 2021 U.S. Workshop on Physics and Chemistry of II-VI Materials
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An InAs/GaSb nBn structure was investigated as a replacement for mercury cadmium telluride (MCT) in long-wavelength infrared (LWIR) and very long-wavelength infrared (VLWIR) detectors, which is advantageous for detection of low-temperature objects. In antimony (Sb)-based III-V compounds, native oxides are easily generated during the process, and these contribute to the surface leakage current. Therefore, a key factor determining device performance is ensuring that native oxides are minimized and the surface is stabilized. Various wet solution-based treatments have been studied. Although wet treatments are effective for surface stabilization, native oxides can be regenerated by subsequent exposure to air or water. In this work, plasma treatments were investigated as an alternative to wet treatment. It was found that hydrogen (H2) plasma treatment effectively reduced the native oxides, and trifluoromethane (CHF3) plasma treatment inhibited the regeneration of the native oxides by coated polytetrafluoroethylene (PTFE) film. The LWIR and VLWIR devices fabricated with these plasma treatments exhibited a dark current density close to MCT rule 07. The proposed plasma treatments could be useful for enhancing the performance of type-II superlattice (T2SL)-based LWIR and VLWIR detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. G.A. Findlay, and D.R. Cutten, Comparison of Performance of 3–5- and 8–12-μm Infrared Systems. Appl. Opt. 28, 23 (1989).

    Article  Google Scholar 

  2. A. Hood, A. Evans, and M. Razeghi, Type-II Superlattice and Quantum Cascade Lasers for MWIR and LWIR Free-Space Communications. Proc. SPIE 6900, 690005 (2008).

    Article  Google Scholar 

  3. T. Kim, H. Lee, J. Bae, and T. Kim, Susceptibility of Combat Aircraft Modeled as an Anisotropic Source of Infrared Radiation. IEEE Trans. Aerosp. Electron. Syst. 52, 5 (2016).

    Google Scholar 

  4. A. Rogalski, M. Kopytko, and P. Martyniuk, Antimonide-Based Infrared Detectors A New Perspective (Bellingham: SPIE Press, 2018).

    Book  Google Scholar 

  5. V. Virkkala, V. Havu, F. Tuomisto, and M. Puska, Native Point Defect Energetics in GaSb: Enabling p-type Conductivity of Undoped GaSb. Phys. Rev. B 86, 144101 (2012).

    Article  Google Scholar 

  6. Y. Guo, and J. Robertson, Chemical Trends and Passivation of Defects at Al2O3: GaAs/InAs/InP/GaSb Interfaces. Microelectron. Eng. 109, 274 (2013).

    Article  CAS  Google Scholar 

  7. L. Zhou, B. Bo, X. Yan, C. Wang, Y. Chi, and X. Yang, Brief Review of Surface Passivation on III–V Semiconductor. Curr. Comput.-Aided Drug Des. 8, 226 (2018).

    Google Scholar 

  8. M. Kutty, E. Plis, A. Khoshakhlagh, S. Myers, N. Gautam, S. Smolev, Y. Sharma, R. Dawson, S. Krishna, S. Lee, and S. Noh, Study of Surface Treatments on InAs/GaSb Superlattice LWIR Detectors. J. Electron. Mater. 39, 10 (2010).

    Article  Google Scholar 

  9. A. Gin, Y. Wei, A. Hood, A. Bajowala, V. Yazdanpanah, M. Razeghi, and M. Tidrow, Ammonium Sulfide Passivation of Type-II InAs/GaSb Superlattice Photodiodes. Appl. Phys. Lett. 84, 2037 (2004).

    Article  CAS  Google Scholar 

  10. K. Banerjee, S. Ghosh, E. Plis, and S. Krishna, Study of Short- and Long-Term Effectiveness of Ammonium Sulfide as Surface Passivation for InAs/GaSb Superlattices Using X-Ray Photoelectron Spectroscopy. J. Electron. Mater. 39, 10 (2010).

    Article  Google Scholar 

  11. E. Plis, M. Kutty, S. Myers, H. Kim, N. Gautam, L. Dawson, and S. Krishna, Passivation of Long-Wave Infrared InAs/GaSb Strained Layer Superlattice Detector. Infrared Phys. Technol. 54, 252 (2011).

    Article  CAS  Google Scholar 

  12. E. DeCuir, J. Little, and N. Baril, Addressing Surface Leakage in Type-II InAs/GaSb Superlattice Materials Using Novel Approaches to Surface Passivation. Proc. SPIE 8155, 815508 (2011).

    Article  Google Scholar 

  13. E. Plis, InAs/GaSb Type-II Superlattice Detectors. Adv. Electron. 246769, 12 (2014).

    Google Scholar 

  14. H. Lee, A. Jang, Y. Kim, H. Jung, P. Bidenko, S. Kim, M. Kim, and J. Nah, Comparative Advantages of A Type-II Superlattice Barrier Over an AlGaSb Barrier for Enhanced Performance of InAs/GaSb Lwir Nbn Photodetectors. Opt. Lett. 46, 16 (2021).

    Google Scholar 

  15. H. Jung, K. Kang, S. Ryu, T. Lee, J. Kim, J. Eom, Y. Kim, A. Jang, H. Lee, Y. Kim, H. Jung, S. Kim, and J. Choi, Investigation of ICP Dry Etching of InAs/GaSb Type-II Superlattice LWIR Photodetector. Proc. SPIE 11741, 11741V (2021).

    Google Scholar 

  16. D. Yun, W. Choi, Y. Park, and B. Hong, Effect of H2 and O2 Plasma Etching Treatment on the Surface of Diamond-Like Carbon Thin Film. Appl. Surf. Sci. 254, 7925 (2008).

    Article  CAS  Google Scholar 

  17. L. Ruppalt, E. Cleveland, J. Champlain, S. Prokes, J. Boos, D. Park, and B. Bennett, Atomic Layer Deposition of AL2O3 on GaSb Using in Situ Hydrogen Plasma Exposure. Appl. Phys. Lett. 101, 231601 (2012).

    Article  Google Scholar 

  18. S. Avtaeva, H2 Dissociation in Ar-H2 Arc Discharge of Moderate Pressure. Plasma Res. Express 1, 015018 (2019).

    Article  CAS  Google Scholar 

  19. T. Veal, C. McConville, and S. Al-Harthi, Surface Preparation of InAs (110) Using Atomic Hydrogen. Sci Technol 7, 303 (2002).

    Google Scholar 

  20. E. Cleveland, L. Ruppalt, B. Bennett, and S. Prokes, Effect of an in Situ Hydrogen Plasma Pre-Treatment on the Reduction of GaSb Native Oxides Prior to Atomic Layer Deposition. Appl. Surf. Sci. 277, 167 (2013).

    Article  CAS  Google Scholar 

  21. NIST X-ray Photoelectron Spectroscopy Database, https://srdata.nist.gov/xps/.

  22. T. Easwarakhanthan, D. Beyssen, L. Brizoual, and J. Bougdira, Spectroellipsometric Analysis of CHF3 Plasma-Polymerized Fluorocarbon Films. J. Vac. Sci. Technol. 24, 1036 (2006).

    Article  CAS  Google Scholar 

  23. C. Lee, Y. Pai, J. Zen, and F. Shieu, Characterization of Teflon-Like Carbon Cloth Prepared by Plasma Surface Modification for Use as Gas Diffusion Backing in Membrane Electrode Assembly. Mater. Chem. Phys. 114, 151 (2009).

    Article  CAS  Google Scholar 

  24. S. Beckford, Y. Wang, and M. Zou, Wear-Resistant PTFE/SIO2 Nanoparticle Composite Films. Tribol. Trans. 54, 849 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by the Agency for Defense Development and Korea Advanced Institute of Science and Technology in Korea.

Funding

This study was funded by the Agency of Defense Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-** Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HJ., Kim, Y.C., Eom, J.H. et al. Plasma Treatment for Surface Stabilization in InAs/GaSb Type-II Superlattice LWIR and VLWIR Photodetectors. J. Electron. Mater. 51, 4689–4694 (2022). https://doi.org/10.1007/s11664-022-09703-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09703-7

Keywords

Navigation