Log in

A 28-GHz Low-Loss AlGaN/GaN HEMT for TX/RX Switches in 5G Base Stations

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The efficiency and switching performance of a LG = 0.25 μm GaN-HEMT with an aluminium gallium nitride back barrier (BB) and discrete field plate is examined in this article. The discrete-field plate minimizes the gate capacitance, such as drain gate capacitance and source gate capacitance, owing to its minimal FP area. Moreover, the AlGaN BB suppresses the vertical leakage towards the SiC substrate. Therefore, a tremendous enhancement is achieved in device efficiency and its switching characteristics. The discrete field plated HEMT with AlGaN BB offers a very low ON resistance (RON) and minimum gate capacitance (CG) of 32.5 Ω.mm and 975 fF/mm respectively. Besides, the switching loss (ESW) and switching delay (DSW) are greatly reduced using the proposed field plated HEMT with AlGaN BB. It exhibits an ESW and DSW of 24 pJ and 5.8 pS, respectively. Furthermore, the exhibited current gain cut-off frequency of the proposed HEMT is 28 × 109 Hz. Hence, the discrete field plated HEMT with AlGaN BB is an excellent device for 28-GHz TX/RX switches in a 5G base station.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. X. Ding, Y. Zhou, and J. Cheng, A review of gallium nitride power device and its applications in motor drive. CES Trans. Electron. Mach. Syst. 3, 54 (2019).

    Article  Google Scholar 

  2. H. Amano, Y. Baines, E. Beam, and B. Matteo, The 2018 GaN power electronics roadmap. J. Appl. Phys. (2018). https://doi.org/10.1088/1361-6463/aaaf9d.

    Article  Google Scholar 

  3. A.S. Augustine Fletcher, and D. Nirmal, A survey of Gallium Nitride HEMT for RF and high power application. Superlattice Microstruct. J. 109, 519 (2017).

    Article  Google Scholar 

  4. V. Yuri, S. Fedorov, and V. Mikavich, Nitride HEMTs vs arsenides: the ultimate battle? J. Mod Electron. Mater. 2, 1 (2016).

    Article  Google Scholar 

  5. C.T. Ma, and Z.H. Gu, Review of GaN HEMT applications in power converters over 500 W. Electronics 8, 1 (2019).

    Google Scholar 

  6. A. Soni, and M. Shrivastava, Novel drain-connected field plate GaN HEMT designs for improved VBD–RON trade-off and RF PA performance. IEEE Trans. Electron. Dev. 67, 1718 (2020).

    Article  Google Scholar 

  7. J. Wong, K. Shinohara, A.L. Corrion, D.F. Brown, Z. Carlos, A. Williams, Y. Tang, J.F. Robinson, I. Khalaf, H. Fung, A. Schmitz, T. Oh, S. Kim, S. Chen, S. Burnham, A. Margomenos, and M. Micovic, Novel asymmetric slant field plate technology for high-speed low-dynamic Ron E/D-mode GaN HEMTs. IEEE Electron. Dev. Lett. 38, 95 (2017).

    Article  CAS  Google Scholar 

  8. C. Dundar, D. Kara, and N. Donmezerv, The effects of gate-connected field plates on hotspot temperatures of AlGaN/GaN HEMTs. IEEE Trans. Electron. Dev. 67, 57 (2020).

    Article  CAS  Google Scholar 

  9. A. Khachatrian, S. Buchner, A. Koehler, C. Affouda, D. McMorrow, S.D. LaLumondiere, E.C. Dillingham, J.P. Bonsall, A.C. Scofield, and D.L. Brewe, The effect of the gate-connected field plate on single-event transients in AlGaN/GaN Schottky-gate HEMTs. IEEE Trans. Nucl. Sci. 66, 1682 (2019).

    Article  CAS  Google Scholar 

  10. B.D. Tierney, S. Choi, S. DasGupta, J.R. Dickerson, S. Reza, R.J. Kaplar, A.G. Baca, and M.J. Marinella, Evaluation of a “Field Cage” for electric field control in GaN-based HEMTs that extends the scalability of breakdown into the kV regime. IEEE Trans Electron Dev. 64, 3740 (2017).

    Article  CAS  Google Scholar 

  11. V. Kumar, G. Chen, S. Guo, and I. Adesida, Field-plated 0.25-μm gate-length AlGaN/GaN HEMTs with varying field plate length. IEEE Trans Electron Dev. 53, 1477 (2006).

    Article  CAS  Google Scholar 

  12. G. Kurt, A. Toprak, O.A. Sen, and E. Ozbay, Study of the power performance of GaN based HEMTs with varying field plate lengths. Int J Circuits Syst Signal Process 9, 174 (2015).

    Google Scholar 

  13. D. Cucak, M. Vasic, O. García, J.A. Oliver, P. Alou, J.A. Cobos, A. Wang, S.M. Horcajo, F. Romero, and F. Calle, Physics-based analytical model for input, output and reverse capacitance of a GaN HEMT with the field-plate structure. IEEE Trans Power Electron 32, 2189 (2017).

    Article  Google Scholar 

  14. W.C. Liao, J.I. Chyi, and Y.M. Hsin, Trap-profile extraction using high-voltage capacitance-voltage measurement in AlGaN/GaN heterostructure field-effect transistors with field plates. IEEE Trans Electron Dev. 62, 835 (2015).

    Article  CAS  Google Scholar 

  15. S.A. Ahsan, S. Ghosh, K. Sharma, A. Dasgupta, S. Khandelwal, and Y.S. Chauhan, Capacitance modeling in dual field-plate power GaN HEMT for accurate switching behavior. IEEE Trans Electron Dev. 63, 565 (2016).

    Article  CAS  Google Scholar 

  16. H.C. Chiu, and C.S. Cheng, On-state and off-state breakdown voltages in GaAs PHEMTs with various field-plate and gate-recess extension structures. IEEE Electron Dev Lett. 31, 186 (2010).

    Article  CAS  Google Scholar 

  17. F. Gamand, M.D. Li, and C. Gaquière, A 10-MHz GaN HEMT DC/DC boost converter for power amplifier applications. IEEE Trans Circuits Syst. 59, 776 (2012).

    Google Scholar 

  18. M. Rodr, Y. Zhang, and D. Maksimovi, High-frequency PWM buck converters using GaN-on-SiC HEMTs. IEEE Trans Power Electron 29, 2462 (2014).

    Article  Google Scholar 

  19. N.K. Subramani, J. Couvidat, A. Al Hajjar, J.C. Nallatamby, R. Sommet, and R. Quéré, Identification of GaN buffer traps in microwave power AlGaN/GaN HEMTs through low frequency S-parameters measurements and TCAD-based physical device simulations. J. Electron Dev. Soc. 5, 175 (2017).

    CAS  Google Scholar 

  20. A.S. Augustine Fletcher, D. Nirmal, J. Ajayan, and L. Arivazhagan, Analysis of AlGaN/GaN HEMT using discrete field plate technique for high power and high frequency applications. Int J Electron Commun. 99, 325 (2019).

    Article  Google Scholar 

  21. J.C. Mayeda, D.Y.C. Lie, J. Lopez. A high efficiency fully monolithic 2-stage C-band GaN power amplifier for 5G microcell application, in IEEE Texas Symposium on Wireless and Microwave Circuits and Systems, (2018), p. 1–4.

  22. K. Nakatani, Y. Yamaguchi, Y. Komatsuzaki, S. Sakata, S. Shinjo., K. Yamanaka, A Ka-band high efficiency Doherty power amplifier MMIC using GaNFET for 5G applications, in IEEE International Microwave Workship on 5G Hardware and System Technologies (2018), p-1-3.

  23. Y. Pei, GaN Technology for 5G Application, in IEEE International Conference on IC Design and Technology, 2019), p.1-4.

  24. K.H. Hamza, and D. Nirmal, A review of GaN HEMT broadband power amplifiers. Int. J. Electron. Commun. 116, 1 (2020).

    Google Scholar 

  25. J. Kim, Highly efficient asymmetric class-F1/F GaN Doherty amplifier. IEEE Trans. Microw. Theoey Tech. 66, 4070 (2019).

    Article  Google Scholar 

  26. G. Naah, S. He, W. Shi, and C. Li, Symmetrical Doherty power amplifier design via continuous harmonic tuned Class-J mode. Int. J. Electron. Commun. 106, 96 (2019).

    Article  Google Scholar 

  27. X. Tong, L. Zhang, P. Zheng, S. Zhang, J. Xu, and R. Wang, An 18–56-GHz wideband GaN low-noise amplifier with 2.2–4.4-dB noise figure. IEEE Microw. Wirel. Compd. Lett. 30, 1153 (2020).

    Article  Google Scholar 

  28. S. Zhang, J. Xu, P. Zheng, R. Wang, and X. Tong, An 18–31-GHz GaN-based LNA with 0.8-dB minimum NF and high robustness. IEEE Microw. Wirel. Commun. Lett. 30, 896 (2020).

    Article  Google Scholar 

  29. X. Tong, S. Zhang, P. Zheng, Y. Huang, J. Xu, X. Shi, and R. Wang, A 22–30 GHz GaN low-noise amplifier with 0.4–1.1-dB noise figure. IEEE Microw. Wirel. Comput. Lett. 29, 134 (2019).

    Article  Google Scholar 

  30. X. Zheng, J. C. Tremblay, S. E. Huettner, P. Kelly, T. Papale, K. L. Lange, Ka-band high pPower GaN SPDT switch MMIC, in IEEE Compound Semiconductor Integrated Circuit Symposium, (2013), p.1-4.

  31. D. Guo, T. Qiao, X. Luo., M. Li, Design of a Ka-band broadband SPDT switch MMIC based on GaNHEMTs, in IEEE International Conference on Communication Technology (2015), p.1-3.

  32. C.Y. Chou, C.H. Lin, W.H. Chen, B.J. Li, and C.Y. Liu, High-dielectric-constant silicon nitride thin films fabricated by radio frequency sputtering in Ar and Ar/N2 gas mixture. Thin Solid Films 709, 1 (2020).

    Article  Google Scholar 

  33. D. Nirmal, L. Arivazhagan, J. Ajayan, and P. Prajoon, Current collapse modeling in AlGaN/GaN HEMT using small signal equivalent circuit for high power application. Superlattices Microstruct. J. 113, 110 (2018).

    Article  Google Scholar 

  34. G. Liu, J. Wu, Y. Lu, B. Zhang, C. Li, L. Sang, Y. Song, K. Shi, X. Liu, S. Yang, Q. Zhu, and Z. Wang, A theoretical calculation of the impact of GaN Cap and AlxGa1−xN barrier thickness fluctuations on two-dimensional electron gas in a GaN/AlxGa1−xN/GaN heterostructure. IEEE Trans Electron Dev. 58, 4272 (2011).

    Article  CAS  Google Scholar 

  35. K.H. Cha, C.T. Ju, and R.Y. Kim, Analysis and evaluation of WBG power device in high frequency induction heating application. Energies 13, 1 (2020).

    Google Scholar 

  36. A.P. Tomás, and A. Fontsere, AlGaN/GaN hybrid MOS-HEMT analytical mobility model. Sol Stat Electron. 56, 201 (2011).

    Article  Google Scholar 

  37. W. Wang, L. Li, L. He, F. Yang, Z. Chen, Y. Zheng, L. He, Z. Wu, B. Zhang, Y. Liu, Influence of AlGaN Back Barrier Layer Thickness on the Dynamic RON Characteristics of AlGaN/GaN HEMTs, in International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors, (2017), p.1-4.

  38. A.M. Bouchour, A.E. Oualkadi, O. Latry, P. Dherbécourt, and A. Echeverri, Estimation of losses of GaN HEMT in power switching applications based on experimental characterization. Comput. Electr. Eng. 84, 1 (2020).

    Article  Google Scholar 

  39. S.L. Pinjare, G. Nithya, V.S. Nagaraja., A. Sthuthi, A Gm/Id based methodology for designing common source amplifier, in International Conference on Micro-Electronics and Telecommunication Engineering, (2018), p.1-4.

  40. B. Hou, L. Yang, M. Mi, M. Zhang, C. Yi, M. Wu, Q. Zhu, Y. Lu, J. Zhu, X. Zhou, L. Lv, X. Ma, and Y. Hao, High linearity and high power performance with barrier layer of sandwich structure and Al0.05GaN back barrier for X-band application. J. Phys D: App. Phys. 53, 1 (2020).

    Google Scholar 

  41. D.F. Brown, M. Micovic, A.K. Kurdoghlian, A. Margomenos, High performance GaN operational amplifier with wide bandwidth and high dynamic range. US patent-US9276529B1-2016. HRL laboratories, (2016).

  42. B. Wang, S. Dong, S. Jiang, C.He, J. Hu, H. Ye., X. Ding, A Comparative Study on the Switching Performance of GaN and Si Power Devices for Bipolar Complementary Modulated Converter Legs. 12, 1 (2019).

  43. M. Esposto, L. Chini, and S. Rajan, Analytical model for power switching GaN-based HEMT design. IEEE Trans. Electron Dev. 58, 1456 (2011).

    Article  Google Scholar 

  44. K. Wang, X. Yang, H. Li, H. Ma, X. Zeng, and W. Chen, An analytical switching process model of low-voltage eGaN HEMTs for loss calculation. IEEE Trans Power Electron. 31, 635 (2016).

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Centre for Research in Semiconductor Devices, Department of Electronics and Communication Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India, for providing all facilities to carry out this research work.

Funding

No funding was obtained for this research

Author information

Authors and Affiliations

Authors

Contributions

A.S. Augustine Fletcher- TCAD Simulation and paper writing. D. Nirmal- Idea and concept. L. Arivazhagan- Idea and concept. J. Ajayan- Idea and concept. Merlin Gilbert Raj- Technical correction. Husna Hamza- Paper editing and English correction. P. Murugapandiyan- Paper editing and English correction. Ramkumar Natarajan- Paper editing and English correction.

Corresponding author

Correspondence to D. Nirmal.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest reported with regard to this paper.

Ethics approval

All procedures performed in studies were in accordance with the ethical standards of the institutional and/or national research committee and with the comparable ethical standards.

Informed Consent

Not applicable.

Research Involving Human Participants and/or Animals

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fletcher, A.S.A., Nirmal, D., Arivazhagan, L. et al. A 28-GHz Low-Loss AlGaN/GaN HEMT for TX/RX Switches in 5G Base Stations. J. Electron. Mater. 51, 1215–1225 (2022). https://doi.org/10.1007/s11664-021-09367-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09367-9

Keywords

Navigation