Log in

Electronic and Topological Properties of Ultraflat Stanene Functionalized by Hydrogen and Halogen Atoms

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Chemical modification can effectively control the quantum spin Hall (QSH) state by changing the lattice constant or topological phase transition. We functionalized ultraflat stanene with hydrogen and halogens on a single side (s-SnX) and both sides (b-SnX). It was found that the buckled heights of the neighboring Sn atoms for s-SnX were still zero, while b-SnX changed into a buckled structure, which is consistent with previous studies. In this work, the electronic and topological properties of s-SnX (X = H, F, Cl, Br, I) were mainly studied based on first-principles calculations. We predicted that s-SnF, s-SnCl and s-SnBr would be topological insulators (TIs). It was found that the band structures of s-SnF, s-SnCl, s-SnBr have s-p band inversions and semimetal-to-semiconductor transitions considering spin orbit coupling (SOC) with the largest band gap of 0.25 eV. The edge bands of calculating the edge states cross linearly, and the numbers of edge bands passing through the zero energy level between –X and Γ point are odd, indicating that s-SnF, s-SnCl and s-SnBr are TIs. Ultraflat stanene functionalized by hydrogen and halogen atoms can effectively control QSH states. It is proved that functionalization provides more choices for topological insulator materials and topological device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C.L. Kane, and E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005).

    Article  CAS  Google Scholar 

  2. B.A. Bernevig, T.L. Hughes, and S.C. Zhang, Science 314, 1757 (2006).

    Article  CAS  Google Scholar 

  3. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.L. Qi, and S.C. Zhang, Science 318, 766 (2007).

    Article  Google Scholar 

  4. M.Z. Hasan, and C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Article  CAS  Google Scholar 

  5. A. Molle, J. Goldberger, M. Houssa, Y. Xu, S.C. Zhang, and D. Akinwande, Nat. Mater. 16, 163 (2017).

    Article  CAS  Google Scholar 

  6. D. Liang, Y.W. Zhang, P. Lu, and Z.G. Yu, Nanoscale 11, 18329 (2019).

    Article  CAS  Google Scholar 

  7. B. Jia, P. Zhu, S. Sun, L. Han, G. Liu, Y. Wang, G.D. Peng, and P.F. Lu, IEEE J. Sel. Top. Quantum 26, 1 (2019).

    Article  CAS  Google Scholar 

  8. C.C. Liu, W. Feng, and Y. Yao, Phys. Rev. Lett. 107, 076802 (2011).

    Article  Google Scholar 

  9. Y. Xu, B. Yan, H.J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, and S.C. Zhang, Phys. Rev. Lett. 111, 136804 (2013).

    Article  Google Scholar 

  10. P. Lu, J. Sichuan Norm. Univ. Nat. Sci. 43, 1 (2020).

    Google Scholar 

  11. F.F. Zhu, W.J. Chen, Y. Xu, C.L. Gao, D.D. Guan, C.H. Liu, D. Qian, S.C. Zhang, and J.-F. Jia, Nat. Mater. 14, 1020 (2015).

    Article  CAS  Google Scholar 

  12. J. Gou, L. Kong, H. Li, Q. Zhong, W. Li, P. Cheng, L. Chen, and K. Wu, Phys. Rev. Mater. 1, 054004 (2017).

    Article  Google Scholar 

  13. Y. Zang, T. Jiang, Y. Gong, Z. Guan, C. Liu, M. Liao, K. Zhu, Z. Li, L. Wang, W. Li, C. Song, D. Zhang, Y. Xu, K. He, X. Ma, S.C. Zhang, and Q.K. Xue, Adv. Funct. Mater. 28, 1802723 (2018).

    Article  Google Scholar 

  14. C.Z. Xu, Y.H. Chan, P. Chen, X. Wang, D. Flötotto, J.A. Hlevyack, G. Bian, S.K. Mo, M.Y. Chou, and T.C. Chiang, Phys. Rev. B 97, 035122 (2018).

    Article  CAS  Google Scholar 

  15. J. Yuhara, Y. Fujii, K. Nishino, N. Isobe, M. Nakatake, L. **an, A. Rubio, and G. Le Lay, 2D Mater. 5, 025002 (2018).

    Article  Google Scholar 

  16. J. Deng, B. **a, X. Ma, H. Chen, H. Shan, X. Zhai, B. Li, A. Zhao, Y. Xu, W. Duan, S.C. Zhang, B. Wang, and J.G. Hou, Nat. Mater. 17, 1081 (2018).

    Article  CAS  Google Scholar 

  17. D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, and K.S. Novoselov, Science 323, 610 (2009).

    Article  CAS  Google Scholar 

  18. Y. Xu, Z. Gan, and S.C. Zhang, Phys. Rev. Lett. 112, 226801 (2014).

    Article  Google Scholar 

  19. S.C. Wu, G. Shan, and B. Yan, Phys. Rev. Lett. 113, 256401 (2014).

    Article  Google Scholar 

  20. M. Liao, Y. Zang, Z. Guan, H. Li, Y. Gong, K. Zhu, X.P. Hu, D. Zhang, Y. Xu, Y.Y. Wang, K. He, X.C. Ma, S.C. Zhang, and Q.K. Xue, Nat. Phys. 14, 344 (2018).

    Article  CAS  Google Scholar 

  21. R.W. Zhang, W.X. Ji, C.W. Zhang, P. Li, and P.J. Wang, Phys. Chem. Chem. Phys. 18, 28134 (2016).

    Article  CAS  Google Scholar 

  22. J. Klimeš, D.R. Bowler, and A. Michaelides, Phys. Rev. B 83, 195131 (2011).

    Article  Google Scholar 

  23. G. Kresse, and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  24. D. Liang, P. Zhu, L. Han, T. Zhang, Y. Li, S. Li, S. Wang, and P. Lu, Nanoscale Res. Lett. 14, 178 (2019).

    Article  Google Scholar 

  25. G. Kresse, and J. Furthmüller, Comp. Mater. Sci. 6, 15 (1996).

    Article  CAS  Google Scholar 

  26. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  27. X.L. Qi, T.L. Hughes, and S.C. Zhang, Phys. Rev. B 78, 195424 (2008).

    Article  Google Scholar 

  28. F.C. Chuang, L.Z. Yao, Z.Q. Huang, Y.T. Liu, C.H. Hsu, T. Das, H. Lin, and A. Bansil, Nano Lett. 14, 2505 (2014).

    Article  CAS  Google Scholar 

  29. S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, and S. Ciraci, Phys. Rev. Lett. 102, 236804 (2009).

    Article  CAS  Google Scholar 

  30. B. Silvi, and A. Savin, Nature 371, 683 (1994).

    Article  CAS  Google Scholar 

  31. G. Henkelman, A. Arnaldsson, and H. Jónsson, Comp. Mater. Sci. 36, 354 (2006).

    Article  Google Scholar 

  32. J.T. Robinson, J.S. Burgess, C.E. Junkermeier, S.C. Badescu, T.L. Reinecke, F.K. Perkins, M.K. Zalalutdniov, J.W. Baldwin, J.C. Culbertson, P.E. Sheehan, and E.S. Snow, Nano. Lett. 10, 3001 (2010).

    Article  CAS  Google Scholar 

  33. Z. Song, C.C. Liu, J. Yang, J. Han, M. Ye, B. Fu, Y. Yang, Q. Niu, J. Lu, and Y. Yao, NPG Asia Mater. 6, e147 (2014).

    Article  CAS  Google Scholar 

  34. J. Wang, Y. Xu, and S.C. Zhang, Phys. Rev. B 90, 054503 (2014).

    Article  CAS  Google Scholar 

  35. L. Fu, C.L. Kane, and E.J. Mele, Phys. Rev. Lett. 98, 106803 (2007).

    Article  Google Scholar 

  36. L. Fu, and C.L. Kane, Phys. Rev. Lett. 102, 216403 (2009).

    Article  Google Scholar 

  37. G. Antonius, and S.G. Louie, Phys. Rev. Lett. 117, 246401 (2016).

    Article  Google Scholar 

  38. B. Monserrat, and D. Vanderbilt, Phys. Rev. Lett. 117, 226801 (2016).

    Article  Google Scholar 

  39. B. Peng, I. Bravić, J.L. MacManus-Driscoll, and B. Monserrat, Phys. Rev. B 100, 161101 (2019).

    Article  CAS  Google Scholar 

  40. J.-M. Lihm, and C.-H. Park, Phys. Rev. B 101, 121102 (2020).

    Article  CAS  Google Scholar 

  41. I. Garate, Phys. Rev. Lett. 110, 046402 (2013).

    Article  Google Scholar 

  42. K. Saha, and I. Garate, Phys. Rev. B 89, 205103 (2014).

    Article  Google Scholar 

  43. P. Pavone, and S. Baroni, Solid State Commun. 90, 295 (1994).

    Article  CAS  Google Scholar 

  44. J.D. Querales-Flores, J. Cao, S. Fahy, and I. Savić, Phys. Rev. Mater. 3, 055405 (2019).

    Article  CAS  Google Scholar 

  45. R.M. Murphy, É.D. Murray, S. Fahy, and I. Savic, Phys. Rev. B 95, 144302 (2017).

    Article  Google Scholar 

  46. J.D. Querales-Flores, P.A. Puente, Đ Dangić, J. Cao, P. Chudzinski, T.N. Todorov, M. Grüning, S. Fahy, and I. Savić, Phys. Rev. B 101, 235206 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 11904370, 61675032), National Key Research and Development Program of China (Nos. 2017YFB0405100, 2018YFB0406601), Foundation of Laboratory of Computational Physics (No. 6142A05180303) and Fund of State Key Laboratory of IPOC (BUPT) (No. IPOC2019ZZ04), P. R. China. LW thanks the support funded by China Postdoctoral Science Foundation (No. 2019M660563).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liyuan Wu or Pengfei Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Zhu, P., Wang, Q. et al. Electronic and Topological Properties of Ultraflat Stanene Functionalized by Hydrogen and Halogen Atoms. J. Electron. Mater. 50, 3334–3340 (2021). https://doi.org/10.1007/s11664-021-08833-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08833-8

Keywords

Navigation