Log in

Fabricating Microcracks in SBS-g-MAH/CB Composites to Improve Conductivity and Small Strain-Sensing Sensitivity

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Microcracks were generated by a freezing–thawing process, by which maleic anhydride-grafted styrene–butadiene–styrene copolymer/carbon black (SBS-g-MAH/CB) composites prepared by melt-blending were repeatedly frozen in liquid nitrogen and thawed in ethyl alcohol. The effect of freezing–thawing on the conductivity and strain-sensing behaviors of the composites was investigated. Scanning electron microscopy (SEM) results showed that freezing–thawing caused microcracks to form between CB aggregates and the matrix due to asymmetric shrinkage and expansion. The microcracks decreased the strength of the interaction between the CB and SBS-g-MAH of the composites, decreasing the glass transition temperature. The effect of the number of freezing–thawing cycles on the conductivity of SBS-g-MAH/CB composites was investigated. The results showed that freezing–thawing improved the conductivity and that the conductivity increased as the number of cycles increased. After 20 repeated freezing–thawing cycles, the conductivity of the composites with 15 wt.% CB increased by 50 times. In strain and dynamic strain tests, freezing–thawing improved the strain sensitivity of the composites. For composites with 25 wt.% CB, the sensitivity increased by 10 times after freezing–thawing. A simple application showed that composites that have undergone freezing–thawing can be applied as sensors to detect the extension and flexion of the index finger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Avilés, A.I. Oliva-Avilés, and M. Cen-Puc, Adv. Eng. Mater. 20, 1701159 (2018).

    Article  Google Scholar 

  2. H. Liu, Q. Li, S.D. Zhang, Y. Rui, X.H. Liu, Y.X. He, D. Kun, C.X. Shan, C.T. Liu, J. Guo, C.Y. Shen, X.J. Wang, N. Wang, Z.C. Wang, R.B. Wei, and Z.H. Guo, J. Mater. Chem. C 6, 12121 (2018).

    Article  CAS  Google Scholar 

  3. R. Yin, S.Y. Yang, Q.M. Li, S.D. Zhang, H. Liu, J. Han, C.T. Liu, and C.Y. Shen, Sci. Bull. 65, 899 (2020).

    Article  CAS  Google Scholar 

  4. J.H. Cai, J. Li, X.D. Chen, and M. Wang, Chem. Eng. J. 393, 124805 (2020).

    Article  CAS  Google Scholar 

  5. L.Y. Duan, S.R. Fu, H. Deng, Q. Zhang, K. Wang, F. Chen, and Q. Fu, J. Mater. Chem. A 2, 17085 (2014).

    Article  CAS  Google Scholar 

  6. Y.N. Zhao, Y. Huang, and W. Hu, Smart Mater. Struct. 28, 035004 (2019).

    Article  Google Scholar 

  7. J.P. Ferreira Santos, G.H. Franca Melo, A.M. Goncalves, J.A. Eiras, and R.E. Suman Bretas, J. App. Polym. Sci. 135, 46650 (2018).

    Article  Google Scholar 

  8. I. Marriam, X.P. Wang, M. Tebyetekerwa, G.Y. Chen, F. Zabihi, J. Pionteck, S.J. Peng, S. Ramakrishna, S.Y. Yang, and M.F. Zhu, J. Mater. Chem. A 6, 13633 (2018).

    Article  CAS  Google Scholar 

  9. J. Narongthong, A. Das, H.H. Le, S. Wießner, and C. Sirisinha, Compos. Part A-Appl. S. 113, 330 (2018).

    Article  CAS  Google Scholar 

  10. J. Teixeira, L. Horta-Romaris, M.-J. Abad, P. Costa, and S. Lanceros-Mendez, Mater. Des. 141, 1 (2018).

    Article  CAS  Google Scholar 

  11. D.Z. Zhang, C.X. Jiang, J. Tong, X.Q. Zong, and W. Hu, J. Electron. Mater. 47, 2263 (2018).

    Article  CAS  Google Scholar 

  12. B. Zhang, B.Y. Li, and S.L. Jiang, J. Electron. Mater. 46, 5737 (2017).

    Article  CAS  Google Scholar 

  13. Y.J. Yang, S. Aziz, S.M. Mehdi, M. Sajid, S. Jagadeesan, and K.H. Choi, J. Electron. Mater. 46, 4172 (2017).

    Article  CAS  Google Scholar 

  14. C.G. Zhou, W.J. Sun, L.C. Jia, L. Xu, K. Dai, D.X. Yan, and Z.M. Li, ACS Appl. Mater. Inter. 11, 37094 (2019).

    Article  CAS  Google Scholar 

  15. S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H.J. Cho, H.J. Algadi, S. AI-Sayari, D.E. Kim, and T. Lee, Adv. Funct. Mater. 25, 3114 (2015).

    Article  CAS  Google Scholar 

  16. J. Lee, H. Kwon, J. Seo, S. Shin, J.H. Koo, C. Pang, S. Son, J.H. Kim, Y.H. Jang, D.E. Kim, and T. Lee, Adv. Mater. 27, 2433 (2015).

    Article  CAS  Google Scholar 

  17. S.L. Yu, X.P. Wang, H.X. **ang, M. Tebyetekerwa, and M.F. Zhu, Sci. China Mater. 62, 995 (2019).

    Article  CAS  Google Scholar 

  18. Z.M. Shen and J.C. Feng, J. Mater. Chem. C 7, 9423 (2019).

    Article  CAS  Google Scholar 

  19. A. Poudel, N. Karode, P. McGorry, P. Walsh, J.G. Lyons, J. Kennedy, S. Matthews, and A. Coffet, Compos. Part B-Eng 165, 397 (2019).

    Article  CAS  Google Scholar 

  20. Y. **ao, S.W. Jiang, X.H. Zhao, H.C. Jiang, and W.L. Zhang, Smart Mater. Struct. 27, 105049 (2018).

    Article  Google Scholar 

  21. X.P. Wang, S. Meng, M. Tebyetekerwa, Y.L. Li, J. Pionteck, B. Sun, Z.Y. Qin, and M.F. Zhu, Compos. Part A-Appl. S. 105, 291 (2018).

    Article  CAS  Google Scholar 

  22. P. Costa, A. Maceiras, M. San Sebastian, C. Garcia-Astrain, J.L. Vilas, and S. Lanceros-Mendez, J. Mater. Chem. C 6, 10580 (2018).

    Article  CAS  Google Scholar 

  23. M. Wang, K. Zhang, X.X. Dai, Y. Li, J. Guo, H. Liu, G.H. Li, Y.J. Tan, J.B. Zeng, and Z.H. Guo, Nanoscale 9, 11017 (2017).

    Article  CAS  Google Scholar 

  24. Y. Chen, L. Wang, Z.F. Wu, J.C. Luo, B. Li, X.W. Huang, H.G. Xue, and J.F. Gao, Compos. Part B-Eng. 176, 107358 (2019).

    Article  CAS  Google Scholar 

  25. G.J. Zhu, P.G. Ren, H. Guo, Y.L. **, D.X. Yan, and Z.M. Li, ACS Appl. Mater. Inter. 11, 23649 (2019).

    Article  CAS  Google Scholar 

  26. Y.F. Chen, J. Li, Y.J. Tan, J.H. Cai, X.H. Tang, J.H. Liu, and M. Wang, Compos. Sci. Technol. 177, 41 (2019).

    Article  CAS  Google Scholar 

  27. J. Narongthong, H.H. Le, A. Das, C. Sirisinha, and S. Wießner, Compos. Sci. Technol. 174, 202 (2019).

    Article  CAS  Google Scholar 

  28. L.L. Wu, D.H. Yao, X.P. Gao, Z.Q. Yu, X. Wang, Y.X. He, Y. Zhu, C. Lu, and K.Y. Li, Smart Mater. Struct. (2020). https://doi.org/10.1088/1361-665X/abc26d.

    Article  Google Scholar 

  29. L. Karasek, B. Meissner, S. Asai, and M. Sumita, Polym. J. 28, 121 (1996).

    Article  CAS  Google Scholar 

  30. C.F. Xu, Y.Q. Tan, Y.H. Song, and Q. Zheng, Polym. Int. 62, 238 (2013).

    Article  CAS  Google Scholar 

  31. L.L. Yang, Y. Ge, Q.H. Zhu, C. Zhang, Z.P. Wang, and P.H. Liu, Smart Mater. Struct. 21, 035011 (2012).

    Article  Google Scholar 

  32. P. Sheng, E.K. Sichel, and J.I. Gittleman, Phys. Rev. Lett. 40, 1197 (1978).

    Article  CAS  Google Scholar 

  33. R. Zhang, M. Baxendale, and T. Peijs, Phys. Rev. B 76, 19543 (2007).

    Google Scholar 

Download references

Acknowledgments

The research was supported by the National Natural Science Foundation of China (Contract Number: 51673059), the Project National United Engineering Laboratory for Advanced Bearing Tribology of Henan University of Science and Technology (Contract Number: 201813), and the SRTP of Henan University of Science and Technology (Contract Numbers: 2019158, 2020135).

Author information

Authors and Affiliations

Authors
  • Corresponding author

    Correspondence to Chang Lu.

    Ethics declarations

    Conflict of interest

    The authors declare that they have no conflict of interest.

    Additional information

    Publisher's Note

    Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

    Rights and permissions

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Wu, L., Lu, C., Yao, D. et al. Fabricating Microcracks in SBS-g-MAH/CB Composites to Improve Conductivity and Small Strain-Sensing Sensitivity. J. Electron. Mater. 50, 992–1001 (2021). https://doi.org/10.1007/s11664-020-08665-y

    Download citation

    • Received:

    • Accepted:

    • Published:

    • Issue Date:

    • DOI: https://doi.org/10.1007/s11664-020-08665-y

    Keywords

    Navigation