Log in

DFT-Based Calculations of the Structural Stability, Electronic and Elastic Characteristics of BBi1-xSbx Ternary Ordered Alloys

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The structural, phase stability, elastic and electronic properties of Sb-doped BBi have been systematically investigated in the zinc blende phase by means of the first-principle approach based on the density functional theory (DFT). The structural and elastic properties were computed by using the generalized gradient approximation proposed by Wu and Cohen (WC-GGA). Specifically, the calculated basic structural parameters, such as the lattice constant and bulk modulus, are in good agreement with the existing experimental measurements and theoretical calculations. The phase stability of BBi1-xSbx alloys in the zinc blende and rock salt phases has been investigated with the determination of the transition pressures (Pt) from the zinc blende (B3) to the rock salt (B1) phase. The electronic band structures were determined using the Tran–Blaha-modified Johnson functional. Furthermore, we investigated the mechanical properties and anisotropic behavior of the BBi1-xSbx alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Geisz, D. Friedman, J. Olson, S.R. Kurtz, R. Reddy, A. Swartzlander, B. Keyes, and A. Norman, Appl. Phys. Lett. 76, 1443 (2000).

    Article  CAS  Google Scholar 

  2. J. Geisz, D. Friedman, J. Olson, S.R. Kurtz, R. Reedy, A. Swartzlander, B. Keyes, A. Norman, Opening Session 123 (2000).

  3. T.L. Chu and A.E. Hyslop, J. Appl. Phys. 43, 276 (1972).

    Article  CAS  Google Scholar 

  4. J.A. Perri, S. Laplaca, and B. Post, Acta Crystallogr. 11, 310 (1958).

    Article  CAS  Google Scholar 

  5. S.M. Ku, J. Electrochem. Soc. 113, 813 (1966).

    Article  CAS  Google Scholar 

  6. T. Soma, S. Sawaoka, and S. Saito, Mater. Res. Bull. 9, 755 (1974).

    Article  CAS  Google Scholar 

  7. A. Garcia and M.L. Cohen, Phys. Rev. B 47, 4215 (1993).

    Article  CAS  Google Scholar 

  8. M.P. Surh, S.G. Louie, and M.L. Cohen, Phys. Rev. B 43, 9126 (1991).

    Article  CAS  Google Scholar 

  9. R.M. Wentzcovitch, M.L. Cohen, and P.K. Lam, Phys. Rev. B 36, 6058 (1987).

    Article  CAS  Google Scholar 

  10. O.A. Golikova, Phys. Status Solidi A 51, 11 (1979).

    Article  CAS  Google Scholar 

  11. M. Ferhat, B. Bouhafs, A. Zaoui, and H. Aourag, J. Phys.: Condens. Matter 10, 7995 (1998).

    CAS  Google Scholar 

  12. R.M. Wentzcovitch, K.J. Chang, and M.L. Cohen, Phys. Rev. B 34, 1071 (1986).

    Article  CAS  Google Scholar 

  13. R.M. Wentzcovitch and M.L. Cohen, J. Phys. C: Solid State Phys. 19, 6791 (1986).

    Article  CAS  Google Scholar 

  14. M. Bhowal and S. Dhar, Optik 147, 277 (2017).

    Article  CAS  Google Scholar 

  15. B.R. Bennett, R. Magno, J.B. Boos, W. Kruppa, and M.G. Ancona, Solid-State Electron. 49, 1875 (2005).

    Article  CAS  Google Scholar 

  16. P. Tang, B. Li, L. Feng, L. Wu, J. Zhang, W. Li, G. Zeng, W. Wang, and C. Liu, J. Alloys Compd. 692, 22 (2017).

    Article  CAS  Google Scholar 

  17. M. Gandouzi, F. Hedhili, and N. Rekik, Comput. Mater. Sci. 149, 307 (2018).

    Article  CAS  Google Scholar 

  18. M. Ustundag, B.G. Yalcin, M. Aslan, and S. Bagci, A Phys Pol A. 130, 98 (2016).

    Article  CAS  Google Scholar 

  19. A. Belabbes, A. Zaoui, and M. Ferhat, J. Phys.: Condens. Matter 20, 415221 (2008).

    Google Scholar 

  20. K. Bouamama, P. Djemia, N. Lebga, and K. Kassali, High Press. Res. 27, 269 (2007).

    Article  CAS  Google Scholar 

  21. E. Deligoz, K. Colakoglu, Y.O. Ciftci, and H. Ozisik, Comput. Mater. Sci. 39, 533 (2007).

    Article  CAS  Google Scholar 

  22. M. Ferhat and A. Zaoui, Appl. Phys. Lett. 88, 161902 (2006).

    Article  CAS  Google Scholar 

  23. S.Q. Wang and H.Q. Ye, Phys. Rev. B 66, 23511 (2002).

    Google Scholar 

  24. P. Carrier and S.H. Wei, Phys. Rev. B 70, 035212 (2004).

    Article  CAS  Google Scholar 

  25. S.Q. Wang and H.Q. Ye, Phys. Status Solidi B 240, 45 (2003).

    Article  CAS  Google Scholar 

  26. K. Amara, B. Soudini, D. Rached, and A. Boudali, Comput. Mater. Sci. 44, 635 (2008).

    Article  CAS  Google Scholar 

  27. S. Cui, W. Feng, H. Hu, Z. Feng, and Y. Wang, Comput. Mater. Sci. 47, 968 (2010).

    Article  CAS  Google Scholar 

  28. B.G. Yalcin, S. Bagci, M. Ustundag, and M. Aslan, Comput. Mater. Sci. 98, 136 (2015).

    Article  CAS  Google Scholar 

  29. A. Zaoui and M. Ferhat, Phys. Stat. Sol. (b) 225, 15 (2001).

    Article  CAS  Google Scholar 

  30. H. Meradji, S. Drablia, S. Ghemid, H. Belkhir, B. Bouhafs, and A. Tadjer, Phys. Status Solidi B 241, 2881 (2004).

    Article  CAS  Google Scholar 

  31. S. Daoud, K. Loucif, N. Bioud, N. Lebgaa, and L. Belagraa, PRAMANA-J Phys. 79, 95 (2012).

    Article  CAS  Google Scholar 

  32. M. Sarwan, P. Bhardwaj, and S. Singh, Chem. Phys. 426, 1 (2013).

    Article  CAS  Google Scholar 

  33. H. Salehi, H. Badehian, and M. Farbod, Mater. Sci. Semicond. Process. 26, 477 (2014).

    Article  CAS  Google Scholar 

  34. M. Ustundag, M. Aslan, and B.G. Yalcin, Comput. Mater. Sci. 81, 471 (2014).

    Article  CAS  Google Scholar 

  35. S. Daoud, N. Bioud, and N. Bouarissa, Mater. Sci. Semicond. Process. 31, 124 (2015).

    Article  CAS  Google Scholar 

  36. E. Deligoz, K. Colakoglu, and Y.O. Ciftci, J. Phys. Chem. Solids 68, 482 (2007).

    Article  CAS  Google Scholar 

  37. Y. Kumashiro, K. Nakamura, Y. Doi, K. Hirata, T. Yokoyama, and K. Sato, J. Crystal Growth 237, 1531 (2002).

    Article  Google Scholar 

  38. S. Hussain, S. Dalui, R.K. Roy, and A.K. Pal, J. Phys. D Appl. Phys. 39, 2053 (2006).

    Article  CAS  Google Scholar 

  39. S. Bagci and B.G. Yalcin, J. Phys. D Appl. Phys. 48, 475304 (2015).

    Article  CAS  Google Scholar 

  40. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, an Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna: Vienna University of Technology, 2001).

    Google Scholar 

  41. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

    Article  Google Scholar 

  42. O.K. Anderson, Phys. Rev. B 42, 3060 (1975).

    Article  Google Scholar 

  43. Z. Wu and R.E. Cohen, Phys. Rev. B 73, 235116 (2006).

    Article  CAS  Google Scholar 

  44. F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).

    Article  CAS  Google Scholar 

  45. F. Tran and P. Blaha, Phys. Rev. B 83, 235118 (2011).

    Article  CAS  Google Scholar 

  46. H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B. 13, 5188 (1976).

    Article  Google Scholar 

  47. B.G. Yalcin, Appl. Phys. A 122, 456 (2016).

    Article  CAS  Google Scholar 

  48. B.G. Yalcin, M. Aslan, M.H. Ozcan, and H.R. Aliabad, Mater. Res. Express 3, 065901 (2016).

    Article  CAS  Google Scholar 

  49. K. Boubendira, S. Bendaif, O. Nemiri, A. Boumaza, H. Meradji, S. Ghemid, and F.E.H. Hassan, Chin. J. Phys. 55, 1092 (2017).

    Article  CAS  Google Scholar 

  50. M. Benchehima, H. Abid, and K. Benchikh, Mater. Chem. Phys. 198, 214 (2017).

    Article  CAS  Google Scholar 

  51. M. Benchehima and H. Abid, Comput. Condens. Matter 14, 114 (2018).

    Article  Google Scholar 

  52. L. Vegard, Z. Phys. 5, 17 (1921).

    Article  CAS  Google Scholar 

  53. M.F. Thorpe, W. **, and S.D. Mahanti, Phys. Rev. B 40, 10294 (1989).

    Article  CAS  Google Scholar 

  54. J.N. Plendl and P.J. Gielisse, Phys. Status Solidi B 42, 681 (1970).

    Article  CAS  Google Scholar 

  55. S. Gagui, S. Ghemid, H. Meradji, B. Zaidi, B. Amimour, S.A. Tahir, R. Ahmed, B. Chouial, B. Hadjoudja, and A.K. Kushwaha, Optik 219, 165253 (2020).

    Article  CAS  Google Scholar 

  56. F.E.H. Hassan, A. Breidi, S. Ghemid, B. Amrani, H. Meradji, and O. Pagès, J. Alloys Compd. 499, 80 (2010).

    Article  CAS  Google Scholar 

  57. A. Mujica, A. Rubio, A. Muñoz, and R.J. Needs, Rev. Mod. Phys. 75, 863 (2003).

    Article  CAS  Google Scholar 

  58. S. Cui, W. Feng, H. Hu, and Z. Feng, Phys. Status Solidi B 246, 119 (2009).

    Article  CAS  Google Scholar 

  59. G. Naeemullah and R. Murtaza, Khenata, Mazharullah and S. Bin Omran. Phase Transitions 87, 893 (2014).

    Article  CAS  Google Scholar 

  60. F.E.H. Hassan, H. Akbarzadeh, and M. Zoaeter, J. Phys.: Condens. Matter 16, 293 (2004).

    Google Scholar 

  61. S. Singh and M. Sarwan, J. Optoelectronic Adv. M 12, 2106 (2010).

    CAS  Google Scholar 

  62. M. Benchehima, H. Abid, A.C. Chaouche, and A. Resfa, Eur. Phys. J. Appl. Phys. 77, 30101 (2017).

    Article  CAS  Google Scholar 

  63. G. Rehman, M. Shafiq, R. Ahmad, S. Jalali-Asadabadi, M. Maqbool, I. Khan, H. Rahnamaye-Aliabad, and I. Ahmad, J. Electron. Mater. 45, 3314 (2016).

    Article  CAS  Google Scholar 

  64. O. Madelung, U. Rössler, M. Schulz, Titanium oxide (TiO2): energy gap, further interband transitions in rutile, in Landolt-Börnsteine Group III Condensed Matter: Numerical Data and Functional Relationships in Science and Technology, 2006.

  65. S. Dalui, S.N. Das, S. Hussain, D. Paramanik, S. Verma, and A.K. Pal, J. Cryst. Growth 305, 149 (2007).

    Article  CAS  Google Scholar 

  66. D. Koller, F. Tran, and P. Blaha, Phys. Rev. B 85, 155109 (2012).

    Article  CAS  Google Scholar 

  67. M. Benchehima and H. Abid, Optik. 127, 6541 (2016).

    Article  CAS  Google Scholar 

  68. N.N. Anua, R. Ahmed, A. Shaari, M.A. Saeed, B.U. Haq, and S. Goumri-Said, Semi-cond. Sci. Technol. 28, 105015 (2013).

    Google Scholar 

  69. M.J. Mehl, Phys. Rev. B 47, 2493 (1993).

    Article  CAS  Google Scholar 

  70. P. Blaha, K. Schwarz, P. Sorantin, and S.K. Trickey, Comput. Phys. Commun. 59, 339 (1990).

    Article  Google Scholar 

  71. J. Wang and S. Yip, Phys. Rev. Lett. 71, 4182 (1993).

    Article  CAS  Google Scholar 

  72. W. Voigt, Lehrbuch der kristallphysik (mit ausschluss der kristalloptik), B.G. Teubner, Leipzig; Berlin, 1928.

  73. A. Reuss, Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. J. Appl. Math. Mech./Zeitschrift Für Angew. Math. Und Mech. 9, 49 (1929).

    Article  CAS  Google Scholar 

  74. R. Hill, The Elastic Behaviour of a Crystalline Aggregate. Proc. Phys. Soc. Sect. A. 65, 349 (1952).

    Article  Google Scholar 

  75. J. Haines, J.M. Léger, and G. Bocquillon, Annu. Rev. Mater. Res. 31, 1 (2001).

    Article  CAS  Google Scholar 

  76. S.F. Pugh, Philos. Mag. 45, 823 (1954).

    Article  CAS  Google Scholar 

  77. I.N. Frantsevich, F.F. Voronov, S.A. Bokuta, Elastic Constants and Elastic Moduli of Metals and Insulators Handbook, Edited by I. N. Frantsevich (Naukuva Dumka, Kiev, 1983), pp. 60–180.

  78. G.S. Priyanga, A.T.A. Meenaatci, R.R. Palanichamy, and K. Iyakutti, Trans. Nonferr. Met. Soc. China English Ed. 23, 2700–2707 (2013).

    Article  CAS  Google Scholar 

  79. Y. Tian, B. Xu, and Z. Zhao, Int. J. Refract. Metals Hard Mater. 33, 93 (2012).

    Article  CAS  Google Scholar 

  80. V.I. Razumovskiy, E.I. Isaev, A.V. Ruban, and P.A. Korzhavyi, Intermetallics 16, 982 (2008).

    Article  CAS  Google Scholar 

  81. S.I. Ranganathan and M. Ostoja-Starzewski, Phys. Rev. Lett. 101, 055504 (2008).

    Article  CAS  Google Scholar 

  82. F.W. Vahldiek and S.A. Mersol, eds., Anisotropy in Single-Crystal Refractory Compounds (New York: Plenum Press, 1968).

    Google Scholar 

  83. P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, and O. Eriksson, J. Appl. Phys. 84, 4891 (1998).

    Article  CAS  Google Scholar 

  84. B. Huang, Y.H. Duan, W.C. Hu, Y. Sun, and S. Chen, Ceram. Int. 41, 6831 (2015).

    Article  CAS  Google Scholar 

  85. Q. Wu and S. Li, Comput. Mater. Sci. 53, 436 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author Bin-Omran acknowledges the financial support of the research supporting Project Number RSP-2020-82 at King Saud University, Riyadh, Saudi Arabia. The authors Boumaza and Meradji acknowledge the financial support of the General Direction of Scientific Research and Technological Development (DGRSDT).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Meradji or **aotian Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boumaza, A., Ghemid, S., Meradji, H. et al. DFT-Based Calculations of the Structural Stability, Electronic and Elastic Characteristics of BBi1-xSbx Ternary Ordered Alloys. J. Electron. Mater. 50, 598–612 (2021). https://doi.org/10.1007/s11664-020-08576-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08576-y

Keywords

Navigation