Log in

Stability of Poly(3-Hexylthiophene):Phenyl-C71-Butyric Acid Methyl Ester Solar Cells Modified by Pre-designed Supramolecular Nanostructures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The air stability of poly(3-hexylthiophene) (P3HT):phenyl-C71-butyric acid methyl ester (PC71BM) solar cells and their modified configurations was investigated by pure carbon nanotube (CNT), CNT-g-poly(3-dodecylthiophene) (PDDT) (stem)-P3HT (leaf), CNT-g-P3HT/P3HT butterfly, and core (CNT)-mantle (polyaniline (PANI))-shell (P3HT) nanostructures over a period of 1 month at 5-day intervals. Although the photovoltaic parameters decreased with aging time, the slopes of the decrease were less steep for well-modified systems. The slowest decreasing trends in short-circuit current density (Jsc = 13.41 mA/cm2 to 12.48 mA/cm2), fill factor (FF = 67% to 62%), open-circuit voltage (Voc = 0.69 V to 0.64 V), power conversion efficiency (PCE = 6.20% to 4.95%), and charge transfer resistance (Rtr = 370 Ω cm2 to 688 Ω cm2) plots versus aging were found for the core-mantle-shell modified photovoltaic devices. After 1 month of aging, P3HT:PC71BM:core-mantle-shell solar cells performed even better than 5-day-aged P3HT:PC71BM:stem-leaf photovoltaics (11.94 mA/cm2, 63%, 0.65 V and 4.89%). Orderly packed π-stacks of P3HT backbones in the respective crystals prevented the oxygen and water from penetrating the crystals, and thus the morphology was more stable. Pre-developed nanostructures including CNT-g-P3HT/P3HT butterfly and CNT-g-PANI/P3HT core-mantle-shell supramolecules not only provided higher phase separation in as-prepared devices, but also controlled and stabilized the morphology and constituent arrangement during air aging processes.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Ameri, N. Li, and C.J. Brabec, Energy Environ. Sci. 6, 2390 (2013).

    CAS  Google Scholar 

  2. L. Dou, J. You, Z. Hong, Z. Xu, G. Li, R.A. Street, and Y. Yang, Adv. Mater. 25, 6642 (2013).

    CAS  Google Scholar 

  3. S. Agbolaghi, F. Abbasi, and H. Gheybi, Eur. Polym. J. 84, 465 (2016).

    CAS  Google Scholar 

  4. S. Agbolaghi, M. Nazari, S. Zenoozi, and F. Abbasi, J. Mater. Sci.: Mater. Electron. 28, 10611 (2017).

    CAS  Google Scholar 

  5. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.C. Chen, J. Gao, G. Li, and Y. Yang, Nat. Commun. 4, 1446 (2013).

    Google Scholar 

  6. G. Dennler, M.C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, and C.J. Brabec, Adv. Mater. 20, 579 (2008).

    CAS  Google Scholar 

  7. M. Jørgensen, K. Norrman, S.A. Gevorgyan, T. Tromholt, B. Andreasen, and F.C. Krebs, Adv. Mater. 24, 580 (2012).

    Google Scholar 

  8. N. Grossiord, J.M. Kroon, R. Andriessen, and P.W. Blom, Org. Electron. 13, 432 (2012).

    CAS  Google Scholar 

  9. M. Jørgensen, K. Norrman, and F.C. Krebs, Sol. Energy Mater. Sol. Cells 92, 686 (2008).

    Google Scholar 

  10. A.K.K. Kyaw, D.H. Wang, V. Gupta, J. Zhang, S. Chand, G.C. Bazan, and A.J. Heeger, Adv. Mater. 25, 2397 (2013).

    CAS  Google Scholar 

  11. A. Guerrero, H. Heidari, T.S. Ripolles, A. Kovalenko, M. Pfannmöller, S. Bals, L.D. Kauffmann, J. Bisquert, and G. Garcia-Belmonte, Adv. Energy Mater. 5, 1401997 (2015).

    Google Scholar 

  12. F.C. Krebs and K. Norrman, Prog. Photovolt. 15, 697 (2007).

    CAS  Google Scholar 

  13. R. Pacios, A.J. Chatten, K. Kawano, J.R. Durrant, D.D. Bradley, and J. Nelson, Adv. Funct. Mater. 16, 2117 (2006).

    CAS  Google Scholar 

  14. A. Rivaton, S. Chambon, M. Manceau, J.L. Gardette, N. Lemaître, and S. Guillerez, Polym. Degrad. Stab. 95, 278 (2010).

    CAS  Google Scholar 

  15. S. Cook, A. Furube, and R. Katoh, J. Mater. Chem. 22, 4282 (2012).

    CAS  Google Scholar 

  16. S. Günes, H. Neugebauer, and N.S. Sariciftci, Chem. Rev. 107, 1324 (2007).

    Google Scholar 

  17. F.C. Krebs, S.A. Gevorgyan, and J. Alstrup, J. Mater. Chem. 19, 5442 (2009).

    CAS  Google Scholar 

  18. C. Lungenschmied, G. Dennler, H. Neugebauer, S.N. Sariciftci, M. Glatthaar, T. Meyer, and A. Meyer, Sol. Energy Mater. Sol. Cells 91, 379 (2007).

    CAS  Google Scholar 

  19. G. Dennler, C. Lungenschmied, H. Neugebauer, N.S. Sariciftci, M. Latreche, G. Czeremuszkin, and M.R. Wertheimer, Thin Solid Films 511, 349 (2006).

    Google Scholar 

  20. W.J. Potscavage, S. Yoo, B. Domercq, and B. Kippelen, Appl. Phys. Lett. 90, 253511 (2007).

    Google Scholar 

  21. F.C. Krebs, Sol. Energy Mater. Sol. Cells 90, 3633 (2006).

    CAS  Google Scholar 

  22. M. Hermenau, M. Riede, K. Leo, S.A. Gevorgyan, F.C. Krebs, and K. Norrman, Sol. Energy Mater. Sol. Cells 95, 1268 (2011).

    CAS  Google Scholar 

  23. K. Norrman and F.C. Krebs, Sol. Energy Mater. Sol. Cells 90, 213 (2006).

    CAS  Google Scholar 

  24. K. Norrman and F.C. Krebs, Surf. Interface Anal. 36, 1542 (2004).

    CAS  Google Scholar 

  25. P.D. Topham, A.J. Parnell, and R.C. Hiorns, J. Polym. Sci. B Polym. Phys. 49, 1131 (2011).

    CAS  Google Scholar 

  26. V. Khopkar and B. Sahoo, Phys. Chem. Chem. Phys. 22, 2986 (2020).

    CAS  Google Scholar 

  27. A.K. Satapathy, S.K. Behera, A. Yadav, L.N. Mahour, C.V. Yelamaggad, K.L. Sandhya, and B. Sahoo, J. Lumin. 210, 371 (2019).

    CAS  Google Scholar 

  28. A.K. Satapathy, S.K. Behera, R. Kumar, K.L. Sandhya, C.V. Yelamaggad, and B. Sahoo, J. Photochem. Photobiol. A Chem. 358, 186 (2018).

    CAS  Google Scholar 

  29. E.A. Parlak, Sol. Energy Mater. Sol. Cells 100, 174 (2012).

    CAS  Google Scholar 

  30. X. Wang, C.X. Zhao, G. Xu, Z.K. Chen, and F. Zhu, Sol. Energy Mater. Sol. Cells 104, 1 (2012).

    Google Scholar 

  31. B. Ecker, J.C. Nolasco, J. Pallarés, L.F. Marsal, J. Posdorfer, J. Parisi, and E. von Hauff, Adv. Funct. Mater. 21, 2705 (2011).

    CAS  Google Scholar 

  32. D. Darwis, E. Sesa, S. Ulum, N.P. Holmes, K. Feron, M. Thameel, R. Chowdhury, D. Farhamsah, L. Tegg, X. Zhou, and P.C. Dastoor, J. Electron. Mater. 49, 1 (2020).

    Google Scholar 

  33. S. García-Carvajal, M.E. Nicho, I. Linzaga-Elizalde, D. Romero-Borja, J.L. Maldonado, F. Hernández-Guzmán, M. Fuentes-Pérez, and D. Hernández-Martínez, J. Electron. Mater. 48, 8212 (2019).

    Google Scholar 

  34. C.J. Schaffer, C.M. Palumbiny, M.A. Niedermeier, C. Jendrzejewski, G. Santoro, S.V. Roth, and P. Müller-Buschbaum, Adv. Mater. 25, 6760 (2013).

    CAS  Google Scholar 

  35. W. Yu, D. Yang, X. Zhu, X. Wang, G. Tu, D. Fan, J. Zhang, C. Li, and A.C.S. Appl, Mater. Interfaces 6, 2350 (2014).

    CAS  Google Scholar 

  36. G. **e, Z. Zhang, Z. Su, X. Zhang, and J. Zhang, Nano Energy 69, 104447 (2020).

    CAS  Google Scholar 

  37. C. Renaud, S.J. Mougnier, E. Pavlopoulou, C. Brochon, G. Fleury, D. Deribew, G. Portale, E. Cloutet, S. Chambon, L. Vignau, and G. Hadziioannou, Adv. Mater. 24, 2196 (2012).

    CAS  Google Scholar 

  38. J.U. Lee, J.W. Jung, T. Emrick, T.P. Russell, and W.H. Jo, J. Mater. Chem. 20, 3287 (2010).

    CAS  Google Scholar 

  39. P. Fu, D. Yang, F. Zhang, W. Yu, J. Zhang, and C. Li, Sci. China Chem. 58, 1169 (2015).

    CAS  Google Scholar 

  40. Q. An, F. Zhang, W. Gao, Q. Sun, M. Zhang, C. Yang, and J. Zhang, Nano Energy 45, 177 (2018).

    CAS  Google Scholar 

  41. V. Singh, S. Arora, M. Arora, V. Sharma, and R.P. Tandon, Phys. Lett. A 378, 3046 (2014).

    CAS  Google Scholar 

  42. S. Agbolaghi, F. Abbasi, S. Zenoozi, and M. Nazari, Mat. Sci. Semicon. Proc. 63, 285 (2017).

    CAS  Google Scholar 

  43. S. Zenoozi, S. Agbolaghi, H. Gheybi, and F. Abbasi, Macromol. Chem. Phys. 218, 1700067 (2017).

    Google Scholar 

  44. E. Mohammadi-Arbati and S. Agbolaghi, Polym. Int. 68, 1292 (2019).

    CAS  Google Scholar 

  45. M. Zeighami, S. Agbolaghi, A. Hamdast, and R. Sarvari, J. Mater. Sci.: Mater. Electron. 30, 7018 (2019).

    CAS  Google Scholar 

  46. S. Agbolaghi, S. Aghapour, S. Charoughchi, F. Abbasi, and R. Sarvari, J. Ind. Eng. Chem. 68, 293 (2018).

    CAS  Google Scholar 

  47. J.Y. Oh, M. Shin, H.W. Lee, Y.J. Lee, H.K. Baik, U. Jeong, and A.C.S. Appl, Mater. Interfaces 6, 7759 (2014).

    CAS  Google Scholar 

  48. S. Agbolaghi, S. Charoughchi, S. Aghapour, F. Abbasi, A. Bahadori, and R. Sarvari, Sol. Energy 170, 138 (2018).

    CAS  Google Scholar 

  49. J.Y. Oh, M. Shin, T.I. Lee, W.S. Jang, Y. Min, J.M. Myoung, H.K. Baik, and U. Jeong, Macromolecules 45, 7504 (2012).

    CAS  Google Scholar 

  50. J.Y. Oh, M. Shin, T.I. Lee, W.S. Jang, Y.J. Lee, C.S. Kim, J.W. Kang, J.M. Myoung, H.K. Baik, and U. Jeong, Macromolecules 46, 3534 (2013).

    CAS  Google Scholar 

  51. J.Y. Oh, T.I. Lee, W.S. Jang, S.S. Chae, J.H. Park, H.W. Lee, J.M. Myoung, and H.K. Baik, Energy Environ. Sci. 6, 910 (2013).

    CAS  Google Scholar 

  52. R. Kumar, A. Kumar, N. Verma, A.V. Anupama, R. Philip, and B. Sahoo, Carbon 153, 545 (2019).

    CAS  Google Scholar 

  53. R. Kumar and B. Sahoo, Nano-Struct. Nano-Objects 14, 131 (2018).

    CAS  Google Scholar 

  54. R. Kumar, R. Rajendiran, H.K. Choudhary, B. Balaiah, A.V. Anupama, and B. Sahoo, Nano-Struct. Nano-Objects 12, 229 (2017).

    CAS  Google Scholar 

  55. A.F. Nogueira, B.S. Lomba, M.A. Soto-Oviedo, C.R.D. Correia, P. Corio, C.A. Furtado, and I.A. Hümmelgen, J. Phys. Chem. C 111, 18431 (2007).

    CAS  Google Scholar 

  56. L. Yan, J. Yi, Q. Chen, J. Dou, Y. Yang, X. Liu, L. Chen, and C.Q. Ma, J. Mater. Chem. A 5, 10010 (2017).

    CAS  Google Scholar 

  57. B. Aïssa, A. Ali, A. Bentouaf, W. Khan, Y. Zakaria, K.A. Mahmoud, K. Ali, N.M. Muhammad, and S.A. Mansour, J. Appl. Phys. 126, 113101 (2019).

    Google Scholar 

  58. B. Xu, J. Choi, A.N. Caruso, and P.A. Dowben, Appl. Phys. Lett. 80, 4342 (2002).

    CAS  Google Scholar 

  59. P.C. Mahakul, K. Sa, B. Das, and P. Mahanandia, Mater. Chem. Phys. 199, 477 (2017).

    CAS  Google Scholar 

  60. J. Kim, J.Y. Shim, J. Lee, D.Y. Lee, S. Chae, J. Kim, I. Kim, H.J. Kim, S.H. Park, and H. Suh, J. Polym. Sci. A: Polym. Chem. 54, 771 (2016).

    CAS  Google Scholar 

  61. B. Xu, G. Sai-Anand, G.E. Unni, H.M. Jeong, J.S. Kim, S.W. Kim, J.B. Kwon, J.H. Bae, and S.W. Kang, Appl. Surf. Sci. 484, 825 (2019).

    CAS  Google Scholar 

  62. B. Aïssa, A. Ali, A. Bentouaf, W. Khan, M.I. Hossain, J. Kroeger, and N.M. Muhammad, Nanotechnology 31, 075201 (2019).

    Google Scholar 

  63. G. Cakmak, H.Y. Guney, S.A. Yuksel, and S. Gunes, Phys. B: Condens. Matter 461, 85 (2015).

    CAS  Google Scholar 

  64. D. Liu, B. Kan, X. Ke, N. Zheng, Z. **e, D. Lu, and Y. Liu, Adv. Energy Mater. 8, 1801618 (2018).

    Google Scholar 

  65. D. Khlaifia, A. Désert, M. Mbarek, A. Garreau, J.Y. Mevellec, F. Massuyeau, E. Faulques, K. Alimi, and J.L. Duvail, Nanotechnology 30, 055603 (2018).

    Google Scholar 

  66. B. Kadem, A. Hassan, M. Göksel, T. Basova, A. Şenocak, E. DemirbaŞ, and M. DurmuŞ, RSC Adv. 6, 93453 (2016).

    CAS  Google Scholar 

  67. Z. Cong, B. Zhao, Z. Chen, W. Wang, H. Wu, J. Liu, J. Wang, L. Wang, W. Ma, C. Gao, and A.C.S. Appl, Mater. Interfaces 11, 16795 (2019).

    CAS  Google Scholar 

  68. T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stühn, P. Schilinsky, C. Waldauf, and C.J. Brabec, Adv. Funct. Mater. 15, 1193 (2005).

    CAS  Google Scholar 

  69. G. Li, V. Shrotriya, Y. Yao, and Y. Yang, J. Appl. Phys. 98, 043704 (2005).

    Google Scholar 

Download references

Acknowledgments

Natural Science Foundation of Hunan Province (No. 2018JJ3478), Scientific Research Fund of Hunan Provincial Education Department (No. 15C1240) and Innovation platform open fund Project (No. 16K080, No. 19A448).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guiju Zhang or Samira Agbolaghi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ao, C., Zhang, G. & Agbolaghi, S. Stability of Poly(3-Hexylthiophene):Phenyl-C71-Butyric Acid Methyl Ester Solar Cells Modified by Pre-designed Supramolecular Nanostructures. J. Electron. Mater. 49, 5882–5894 (2020). https://doi.org/10.1007/s11664-020-08278-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08278-5

Keywords

Navigation