Log in

Enhanced Resistive Switching Effect in Ag Nanoparticles Embedded in Graphene Oxide Thin Film

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, the effect of different concentrations of Ag nanoparticles embedded in graphene oxide (GO) for resistive random-access memory (RRAM) has been investigated. The spin-coating method was used for the deposition of a GO-Ag layer on indium tin oxide-coated glass substrate. The structural studies of the samples were carried out using x-ray diffraction. The morphology of the as-deposited layer was determined using scanning electron microscopy and atomic force microscopy. It has been observed that Ag-doped memory devices require low voltage to switch from OFF to ON and vice versa. The switching voltage was reduced by half in Ag-doped devices as compared to undoped devices with a high OFF/ON current ratio of ∼ 103. The electrical stability of Ag-doped devices was tested for 4 × 103 s. Also, the SET/RESET behavior was tested for up to 60 cycles at a read voltage of 0.2 V. It was observed that both electrical stability and SET/RESET behavior did not exhibit excessive degradation. The switching speed of the RRAM device was calculated using an oscilloscope and found to be ∼ 200 ns for the low-resistance state (LRS) and ∼ 1 μs for the high-resistance state (HRS). The capacitance in Ag-doped GO devices was recorded and found to be ∼ 400 pF in the HRS as compared to 20 pF in case of undoped GO devices. It has been concluded that the charge trap** and de-trap** mechanism in case of Ag-doped GO is responsible for the enhanced properties of fabricated RRAM devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Scott, Science 304, 62 (2004).

    Article  CAS  Google Scholar 

  2. E. Linn, R. Rosezin, C. Kügeler, and R. Waser, Nat. Mater. 9, 403 (2010).

    Article  CAS  Google Scholar 

  3. W. Czubatyj and S.J. Hudgens, Electron. Mater. Lett. 8, 157 (2012).

    Article  CAS  Google Scholar 

  4. H.Y. Lee, P.S. Chen, C.C. Wang, S. Maikap, P.J. Tzeng, C.H. Lin, and M.J. Tsai, Jpn. J. Appl. Phys. 46, 2175 (2007).

    Article  CAS  Google Scholar 

  5. D. Carta, I. Salaoru, A. Khiat, A. Regoutz, C. Mitterbauer, N.M. Harrison, and T. Prodromakis, ACS Appl. Mater. Interfaces 8, 19605 (2016).

    Article  CAS  Google Scholar 

  6. M.H. Tang, B. Jaing, Y.G. **ao, Z.Q. Zeng, Z.P. Wang, J.C. Li, and J. He, Microelectron. Eng. 93, 35 (2012).

    Article  CAS  Google Scholar 

  7. L. Gao, Y. Li, Q. Li, Z. Song, and F. Ma, Nanotechnology 28, 215201 (2017).

    Article  Google Scholar 

  8. P. Cui, S. Seo, J. Lee, L. Wang, E. Lee, M. Min, and H. Lee, ACS Nano 5, 6826 (2011).

    Article  CAS  Google Scholar 

  9. W.Y. Chang, K.J. Cheng, J.M. Tsai, H.J. Chen, F. Chen, M.J. Tsai, and T.B. Wu, Appl. Phys. Lett. 95, 042104 (2009).

    Article  Google Scholar 

  10. D.V. Talapin, J.S. Lee, M.V. Kovalenko, and E.V. Shevchenko, Chem. Rev. 110, 389 (2010).

    Article  CAS  Google Scholar 

  11. H. Zhong, Y. Zhou, Y. Yang, C. Yang, and Y. Li, J. Phys. Chem. C 111, 6538 (2007).

    Article  CAS  Google Scholar 

  12. G. Khurana, P. Misra, N. Kumar, S. Kooriyattil, J.F. Scott, and R.S. Katiyar, Nanotechnology 27, 015702 (2015).

    Article  Google Scholar 

  13. V. Senthikumar, A. Kathalingam, S. Valanarasu, V. Kannan, and J.K. Rhee, Phys. Lett. A 377, 2432 (2013).

    Article  Google Scholar 

  14. G. Khurana, P. Misra, N. Kumar, and R.S. Katiyar, J. Phys. Chem. C 118, 21357 (2014).

    Article  CAS  Google Scholar 

  15. S. Choudhary, M. Soni, and S.K. Sharma, Semicond. Sci. Technol. 34, 085009 (2019).

    Article  Google Scholar 

  16. J.H. Yoon, K.M. Kim, M.H. Lee, S.K. Kim, G.H. Kim, S.J. Song, and C.S. Hwang, Appl. Phys. Lett. 97, 232904 (2010).

    Article  Google Scholar 

  17. P. Wang, D. Tanaka, S. Ryuzaki, S. Araki, K. Okamoto, and K. Tamada, Appl. Phys. Lett. 107, 151601 (2015).

    Article  Google Scholar 

  18. Y.J. Yu, Y. Zhao, S. Ryu, L.E. Brus, K.S. Kim, and P. Kim, Nano Lett. 9, 3430 (2009).

    Article  CAS  Google Scholar 

  19. W.S. Hummers and R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  20. D.R. Chowdhury, C. Singh, and A. Paul, RSC Adv. 4, 15138 (2014).

    Article  Google Scholar 

  21. A. Serra, E. Filippo, M. Re, M. Palmisano, A. Buccolieri, and D. Manno, Nanotechnology 20, 165501 (2009).

    Article  CAS  Google Scholar 

  22. R. Kumar, A. Kumar, R. Singh, R. Kumar, D. Kumar, S.K. Sharma, and M. Kumar, Mater. Chem. Phys. 240, 121922 (2020).

    Article  CAS  Google Scholar 

  23. B. Ajitha, Y.A. Kumar Reddy, P.S. Reddy, H.J. Jeon, and C.W. Ahn, RSC Adv. 6, 36171 (2016).

    Article  CAS  Google Scholar 

  24. S. Rani, M. Kumar, R. Garg, S. Sharma, and D. Kumar, IEEE Sens. J. 16, 2929 (2016).

    Article  CAS  Google Scholar 

  25. M.A. Lampert and R.B. Schilling, Semicond. Semimet. 6, 1 (1970).

    Article  Google Scholar 

  26. Z. Caldiran, M. Sinoforoglu, O. Metin, S. Aydogan, and K. Meral, J. Alloys Compd. 631, 261 (2015).

    Article  CAS  Google Scholar 

  27. T. Harada, I. Ohkubo, K. Tsubouchi, H. Kumigashira, T. Ohnishi, M. Lippmaa, Y. Matsumoto, H. Koinuma, and M. Oshima, Appl. Phys. Lett. 92, 222113 (2008).

    Article  Google Scholar 

  28. D.H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.S. Li, G.S. Park, B. Lee, S. Han, M. Kim, and C.S. Hwang, Nat. Nanotechnol. 5, 148 (2010).

    Article  CAS  Google Scholar 

  29. R. Singh, R. Kumar, A. Kumar, D. Kumar, and M. Kumar, Mater. Res. Express 6, 105621 (2019).

    Article  CAS  Google Scholar 

  30. S.K. Hong, J.E. Kim, S.O. Kim, S.Y. Choi, and B.J. Cho, IEEE Electron. Device Lett. 31, 1005 (2010).

    Article  CAS  Google Scholar 

  31. F. Zhao, J. Liu, X. Huang, X. Zou, G. Lu, P. Sun, S. Wu, W. Ai, M. Yi, X. Qi, L. **e, J. Wang, H. Zhang, and W. Huang, ACS Nano 6, 3027 (2012).

    Article  CAS  Google Scholar 

  32. Y. Murashima, M.R. Karim, R. Furue, T. Matsui, H. Takehira, K. Wakata, and S. Hayami, Inorg. Chem. Front. 3, 842 (2016).

    Article  CAS  Google Scholar 

  33. M.H. Lee, K.M. Kim, G.H. Kim, J.Y. Seok, S.J. Song, J.H. Yoon, and C.S. Hwang, Appl. Phys. Lett. 96, 152909 (2010).

    Article  Google Scholar 

  34. K.J. Baeg, Y.Y. Noh, H. Sirringhaus, and D.Y. Kim, Adv. Funct. Mater. 20, 224 (2010).

    Article  CAS  Google Scholar 

  35. A. Morales-Sanchez, J. Barreto, C. Dominguez, M. Aceves, Z. Yu, and J.A.L. Lopez, Nanotechnology 19, 165401 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Prof. C. C. Tripathi, Director “University Institute of Engineering and Technology” Kurukshetra University, Kurukshetra, India, for providing characterization facilities to complete this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Kumar, R., Kumar, A. et al. Enhanced Resistive Switching Effect in Ag Nanoparticles Embedded in Graphene Oxide Thin Film. J. Electron. Mater. 49, 4872–4881 (2020). https://doi.org/10.1007/s11664-020-08207-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08207-6

Keywords

Navigation