Log in

High Thermoelectric Figure of Merit in p-Type (Bi2Te3)x − (Sb2Te3)1−x Alloys Made from Element-Mechanical Alloying and Spark Plasma Sintering

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

p-Type (Bi2Te3)x − (Sb2Te3)1−x alloys with high thermoelectric properties were fabricated for waste heat energy recovery by mechanical alloying followed by spark plasma sintering. The samples’ diffraction peaks, such as the (015) positions, were slightly shifted from high to low 2θ angles with decreasing Sb2Te3 content due to the occupation of Sb sites by Bi atoms in the crystal lattice. The electrical conductivity increased with (Sb2Te3) content due to an increase in carrier concentration. The sample with the nominal composition of (Bi2Te3)0.15 + (Sb2Te3)0.85 exhibited a maximum thermoelectric figure of merit, ZT of 1.3 ± 0.06 at 400 K, and 1.07 ± 0.06 at 300 K. This enhanced ZT was successfully achieved by increasing (Sb2Te3) content, which reduces intrinsic conduction at higher temperatures by increasing carrier concentration and band gaps. The enhanced thermoelectric performance of the (Bi2Te3)0.15 + (Sb2Te3)0.85 TE materials can provide exceptional benefits for power generation and cooling applications around 400 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.F. Ioffe, Infosearch Limited (London, 1957).

  2. G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics-Basic Principles and New Materials Developments (Berlin: Springer, 2001).

    Google Scholar 

  3. F.J. DiSalvo, Science 285, 703 (1999).

    Article  Google Scholar 

  4. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).

    Article  Google Scholar 

  5. H.S. Kim, P. Dharmaiah, B. Madavali, R. Ott, K.H. Lee, and S.J. Hong, Acta Mater. 128, 43 (2017).

    Article  Google Scholar 

  6. B. Madavali, H.S. Kim, K.H. Lee, and S.J. Hong, Intermetallics 82, 68 (2017).

    Article  Google Scholar 

  7. K. Biswas, J.Q. He, Q.C. Zhang, G.Y. Wang, C. Uher, V.P. Dravid, and M.G. Kanatzidis, Nat. Chem. 3, 160 (2011).

    Article  Google Scholar 

  8. B. Madavali, H.S. Kim, K.H. Lee, Y. Isoda, F. Gascoin, and S.J. Hong, Mater. Des. 112, 485 (2016).

    Article  Google Scholar 

  9. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).

    Article  Google Scholar 

  10. W. **e, X. Tang, Y. Yan, Q. Zhang, and T.M. Tritt, Appl. Phys. Lett. 94, 102111 (2009).

    Article  Google Scholar 

  11. S. Fan, J. Zhao, J. Guo, Q. Yan, J. Ma, and H.H. Hng, Appl. Phys. Lett. 96, 182104 (2010).

    Article  Google Scholar 

  12. J. Jiang, L.D. Chen, Q. Yao, S.Q. Bai, and Q. Wang, Mater. Chem. Phys. 92, 39 (2005).

    Article  Google Scholar 

  13. S.J. Hong and B.S. Chun, Mater. Sci. Eng. A 356, 345 (2003).

    Article  Google Scholar 

  14. J.J. Shen, T.J. Zhu, X.B. Zhao, S.N. Zhang, S.H. Yang, and Z.Z. Yin, Energy Environ. Sci. 3, 1519 (2010).

    Article  Google Scholar 

  15. W.M. Yim and F.D. Rosi, Solid-State Electron. 15, 1121 (1972).

    Article  Google Scholar 

  16. J. Black, E.M. Conwell, L. Seigle, and C.W. Spencer, J. Phys. Chem. Solids 2, 240 (1957).

    Article  Google Scholar 

  17. H. Kohler, Phys. Status Solidi B 74, 591 (1976).

    Article  Google Scholar 

  18. M.J. Smith, R.J. Knight, and C.W. Spencer, J. Appl. Phys. 33, 2186 (1962).

    Article  Google Scholar 

  19. C. Chen, D.W. Liu, B.P. Zhang, and J.F. Li, J. Electron. Mater. 40, 942 (2011).

    Article  Google Scholar 

  20. J. Horak, K. Cermak, and L. Koudelka, J. Phys. Chem. Solids 47, 805 (1986).

    Article  Google Scholar 

  21. L.P. Hu, T.J. Zhu, Y.G. Wang, H.H. **e, Z.J. Xu, and X.B. Zhao, NPG Asia Mater. 6, e88 (2014).

    Article  Google Scholar 

  22. J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang, J. Cryst. Growth 277, 258 (2005).

    Article  Google Scholar 

  23. B. Madavali and S.J. Hong, J. Electron. Mater. 45, 6059 (2017).

    Article  Google Scholar 

  24. D.M. Rowe, V.S. Shukla, and N. Savvides, Nature 290, 765 (1981).

    Article  Google Scholar 

  25. X.A. Fan, J.Y. Yang, W. Zhu, S.Q. Bao, X.K. Duan, C.J. **ao, Q.Q. Zhang, and Z.J. **e, Phys. D 39, 5069 (2006).

    Article  Google Scholar 

  26. D. Li, R.R. Sun, and X.Y. Qin, Intermetallics 19, 2002 (2011).

    Article  Google Scholar 

  27. M.H. Lee, K.R. Kim, J.S. Rhyee, S.D. Park, and G.J. Snyder, J. Mater. Chem. C 3, 10494 (2015).

    Article  Google Scholar 

  28. B. Hamdou, J. Gooth, T. Bohnert, A. Dorn, L. Akinsinde, E. Pippel, R. Zierold, and K. Nielsch, Adv. Energy Mater. 5, 1500280 (2015).

    Article  Google Scholar 

  29. W.J. Mir, A. Assouline, C. Livache, B. Martinez, N. Goubet, X.Z. Xu, G. Patriarche, S. Ithurria, and E. Lhuillie, Sci. Rep. 7, 9647 (2017).

    Article  Google Scholar 

  30. P. Zhu, Y. Imai, Y. Isoda, Y. Shinohara, X. Jia, and G. Zou, Mater. Trans. 46, 2690 (2005).

    Article  Google Scholar 

  31. H. Wu, J. Carrete, Z. Zhang, Y. Qu, Z. Shen, Z. Wang, L.D. Zhao, and J. He, NPG Asia Mater. 6, e108 (2014).

    Article  Google Scholar 

  32. H.J. Goldsmid and R.W. Douglas, J. Appl. Phys. 5, 386 (1954).

    Google Scholar 

  33. R.J. Mehta, Y.L. Zhang, C. Karthik, B. Singh, R.W. Siegel, T.B. Tasciuc, and G. Ramanath, Nat. Mater. 11, 233 (2011).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by ‘Energy Efficiency & Resources Core Technology Program’ of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (20152020001210). Part of this work also supported by the National Research Council of Science & Technology (NST) Grant by the Korea Government (MSIP) (No. CRC-15-06-KIGAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Jik Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madavali, B., Kim, HS., Lee, CH. et al. High Thermoelectric Figure of Merit in p-Type (Bi2Te3)x − (Sb2Te3)1−x Alloys Made from Element-Mechanical Alloying and Spark Plasma Sintering. J. Electron. Mater. 48, 416–424 (2019). https://doi.org/10.1007/s11664-018-6706-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6706-7

Keywords

Navigation