Log in

Triphenylamine Derived 3-Acetyl and 3-Benzothiazolyl Bis and Tris Coumarins: Synthesis, Photophysical and DFT Assisted Hyperpolarizability Study

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Triphenylamine derived bis- and tris-branched donor-pi-acceptor coumarins with acetyl and benzothiazolyl acceptors are studied for their linear and nonlinear optical properties that originate from their photophysical and molecular structure. Plots of solvent polarities versus the Stokes shift, frontier molecular orbital analysis and Generalised Mulliken Hush analysis have established their strong charge transfer character supported by the strong emission solvatochromism of these chromophores. On the basis of excited state intramolecular charge transfer, the first-, second- and third-order polarizability of these dyes are determined by a solvatochromic method and supported by density functional theory calculations using CAM-B3LYP/6-31g(d). Compared to the acetyl group, the benzothiazolyl group is a strong acceptor, and its corresponding derivatives show enhanced absorption, emission maxima and non-linear optical response. Bond length alternation and bond order alternation analysis reveals that these chromophores approach the cyanine-like framework which is responsible for maximum perturbation to produce high nonlinear optical response. Third order nonlinear susceptibility for dyes 1 and 2 is determined by Z-scan measurement. All of these methods are used to determine the nonlinear optical properties, and thermogravimetric analysis suggests that these chromophores are thermally robust and efficient nonlinear optical materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.W. Duarte and F.J. Hillman, Dye Laser Principles, with Applications (San Diego: Academic Press Inc., 1990).

    Google Scholar 

  2. B. Liu, R. Wang, W. Mi, X. Li, and H. Yu, J. Mater. Chem. 22, 15379 (2012).

    Article  Google Scholar 

  3. S.K. Lanke and N. Sekar, J. Fluoresc. 26, 949 (2016).

    Article  Google Scholar 

  4. P.R. Varanasi, A.K.-Y. Jen, J. Chandrasekhar, I.N.N. Namboothiri, and A. Rathna, J. Am. Chem. Soc. 118, 12443 (1996).

    Article  Google Scholar 

  5. I. Baraldi, E. Benassi, S. Ciorba, M. Šindler-Kulyk, I. Škorić, and A. Spalletti, Chem. Phys. 361, 61 (2009).

    Article  Google Scholar 

  6. C.G. Fortuna, U. Mazzucato, G. Musumarra, D. Pannacci, and A. Spalletti, J. Photochem. Photobiol. A Chem. 216, 66 (2010).

    Article  Google Scholar 

  7. B. Carlotti, A. Spalletti, M. Sindler-Kulyk, and F. Elisei, Phys. Chem. Chem. Phys. 13, 4519 (2011).

    Article  Google Scholar 

  8. Y.V. Pereverzev, K.N. Gunnerson, O.V. Prezhdo, P.A. Sullivan, Y. Liao, B.C. Olbricht, A.J.P. Akelaitis, A.K.-Y. Jen, and L.R. Dalton, J. Phys. Chem. C 112, 4355 (2008).

    Article  Google Scholar 

  9. L.R. Dalton, P.A. Sullivan, and D.H. Bale, Chem. Rev. 110, 25 (2010).

    Article  Google Scholar 

  10. X. Liu, J.M. Cole, P.G. Waddell, T.-C. Lin, J. Radia, and A. Zeidler, J. Phys. Chem. A 116, 727 (2012).

    Article  Google Scholar 

  11. J. Qi, W. Qiao, and Z.Y. Wang, Chem. Rec. 16, 1531 (2016).

    Article  Google Scholar 

  12. R.L. Gieseking, C. Risko, and J.-L. Brédas, J. Phys. Chem. Lett. 6, 2158 (2015).

    Article  Google Scholar 

  13. T.G. Pavlopoulos, IEEE J. Quantum Electron. 9, 510 (1973).

    Article  Google Scholar 

  14. X. Tang, W. Liu, J. Wu, C.-S. Lee, J. You, and P. Wang, J. Org. Chem. 75, 7273 (2010).

    Article  Google Scholar 

  15. S. Roquet, A. Cravino, P. Leriche, O. Alévêque, P. Frère, and J. Roncali, J. Am. Chem. Soc. 128, 3459 (2006).

    Article  Google Scholar 

  16. P. Leriche, P. Frère, A. Cravino, O. Alévêque, and J. Roncali, J. Org. Chem. 72, 8332 (2007).

    Article  Google Scholar 

  17. M. He, R.J. Twieg, U. Gubler, D. Wright, and W.E. Moerner, Chem. Mater. 15, 1156 (2003).

    Article  Google Scholar 

  18. C.N. LaFratta, J.T. Fourkas, T. Baldacchini, and R.A. Farrer, Angew. Chemie Int. Ed. 46, 6238 (2007).

    Article  Google Scholar 

  19. M. Behl, E. Hattemer, M. Brehmer, and R. Zentel, Macromol. Chem. Phys. 203, 503 (2002).

    Article  Google Scholar 

  20. J.L. Hua, B. Li, F.S. Meng, F. Ding, S.X. Qian, and H. Tian, Polymer (Guildf) 45, 7143 (2004).

    Article  Google Scholar 

  21. C. Allain, F. Schmidt, R. Lartia, G. Bordeau, C. Fiorini-Debuisschert, F. Charra, P. Tauc, and M.-P. Teulade-Fichou, ChemBioChem 8, 424 (2007).

    Article  Google Scholar 

  22. G.S. He, L.-S. Tan, Q. Zheng, and P.N. Prasad, Chem. Rev. 108, 1245 (2008).

    Article  Google Scholar 

  23. Y. Yu, Y. Cui, Y. Yang, and G. Qian, RSC Adv. 6, 81969 (2016).

    Article  Google Scholar 

  24. C. Hu, F. Liu, H. Zhang, F. Huo, Y. Yang, H. Wang, H. **ao, Z. Chen, J. Liu, L. Qiu, Z. Zhen, X. Liu, and S. Bo, J. Mater. Chem. C 3, 11595 (2015).

    Article  Google Scholar 

  25. W. Chen, Z.-R. Li, D. Wu, F.-L. Gu, X.-Y. Hao, B.-Q. Wang, R.-J. Li, and C.-C. Sun, J. Chem. Phys. 121, 10489 (2004).

    Article  Google Scholar 

  26. Y. Li, Z.-R. Li, D. Wu, R.-Y. Li, X.-Y. Hao, and C.-C. Sun, J. Phys. Chem. B 108, 3145 (2004).

    Article  Google Scholar 

  27. N. Mataga, Y. Kaifu, and M. Koizumi, Bull. Chem. Soc. Jpn. 29, 465 (1956).

    Article  Google Scholar 

  28. Z.R. Grabowski, K. Rotkiewicz, and W. Rettig, Chem. Rev. 103, 3899 (2003).

    Article  Google Scholar 

  29. B. Valeur, in Molecular Fluorescence (New York: Wiley, 2001), pp. 200–225.

  30. J.L. Oudar and D.S. Chemla, J. Chem. Phys. 66, 2664 (1977).

    Article  Google Scholar 

  31. B. Carlotti, R. Flamini, I. Kikaš, U. Mazzucato, and A. Spalletti, Chem. Phys. 407, 9 (2012).

    Article  Google Scholar 

  32. L. Chen, Y. Cui, X. Mei, G. Qian, and M. Wang, Dyes Pigments 72, 293 (2007).

    Article  Google Scholar 

  33. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, and D.J. Fox, Gaussian 09, Revision A.02 (Wallingford, CT: Gaussian, Inc., 2016).

  34. R. Dennington, T.A. Keith, and J.M. Millam, GaussView, Version 5 (Semichem Inc., 2009).

  35. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  36. R. Menzel, D. Ogermann, S. Kupfer, D. Weiß, H. Görls, K. Kleinermanns, L. González, and R. Beckert, Dyes Pigments 94, 512 (2012).

    Article  Google Scholar 

  37. C. Lee, W. Yang, and R.G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  Google Scholar 

  38. M.W. Wong, M.J. Frisch, and K.B. Wiberg, J. Am. Chem. Soc. 113, 4776 (1991).

    Article  Google Scholar 

  39. L.E. Johnson, L.R. Dalton, and B.H. Robinson, Acc. Chem. Res. 47, 3258 (2014).

    Article  Google Scholar 

  40. O.D. Fominykh, A.V. Sharipova, and MYu Balakina, Int. J. Quantum Chem. 116, 103 (2016).

    Article  Google Scholar 

  41. J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 105, 2999 (2005).

    Article  Google Scholar 

  42. S. Kothavale and N. Sekar, Dye. Pigment. 136, 116 (2017).

    Article  Google Scholar 

  43. N.J. Turro, Modern Molecular Photochemistry (Menlo Park, CA: Benjamin/Cummings Publishing Co., Inc., 1978).

  44. B.J. Coe, J.A. Harris, I. Asselberghs, K. Clays, G. Olbrechts, A. Persoons, J.T. Hupp, R.C. Johnson, S.J. Coles, M.B. Hursthouse, and K. Nakatani, Adv. Funct. Mater. 12, 110 (2002).

    Article  Google Scholar 

  45. E. Lippert, Zeitschrift Für Elektrochemie, Berichte Der Bunsengesellschaft Für Phys. Chemie 61, 962 (1957).

    Google Scholar 

  46. I.D.L. Albert, T.J. Marks, and M.A. Ratner, J. Am. Chem. Soc. 120, 11174 (1998).

    Article  Google Scholar 

  47. B.J. Coe, J. Fielden, S.P. Foxon, J.A. Harris, M. Helliwell, B.S. Brunschwig, I. Asselberghs, K. Clays, J. Garín, and J. Orduna, J. Am. Chem. Soc. 132, 10498 (2010).

    Article  Google Scholar 

  48. Shawn M. Abernathy and Robert R. SharpView, J. Chem. Phys. 106, 9032 (1997).

    Article  Google Scholar 

  49. C. Creutz, M.D. Newton, and N. Sutin, J. Photochem. Photobiol. A Chem. 82, 47 (1994).

    Article  Google Scholar 

  50. M. Rust, J. Lappe, and R.J. Cave, J. Phys. Chem. A 106, 3930 (2002).

    Article  Google Scholar 

  51. M.D. Newton, J. Electroanal. Chem. 438, 3 (1997).

    Article  Google Scholar 

  52. A. Akella, S.L. Sochava, and L. Hesselink, Opt. Lett. 22, 919 (1997).

    Article  Google Scholar 

  53. M. Matsui, M. Suzuki, M. Hayashi, K. Funabiki, Y. Ishigure, Y. Doke, and H. Shiozaki, Bull. Chem. Soc. Jpn 76, 607 (2003).

    Article  Google Scholar 

  54. C.R. Moylan, R.J. Twieg, V.Y. Lee, S.A. Swanson, K.M. Betterton, and R.D. Miller, J. Am. Chem. Soc. 115, 12599 (1993).

    Article  Google Scholar 

  55. R.J. Jeng, Y.M. Chen, A.K. Jain, J. Kumar, and S.K. Tripathy, Chem. Mater. 4, 972 (1992).

    Article  Google Scholar 

  56. L.A. Padilha, S. Webster, H. Hu, O.V. Przhonska, D.J. Hagan, E.W. Van Stryland, M.V. Bondar, I.G. Davydenko, Y.L. Slominsky, and A.D. Kachkovski, Chem. Phys. 352, 97 (2008).

    Article  Google Scholar 

  57. J. Mattu, T. Johansson, and G.W. Leach, J. Phys. Chem. C 111, 6868 (2007).

    Article  Google Scholar 

  58. Y. Erande, M.C. Sreenath, S. Chitrambalam, I.H. Joe, and N. Sekar, Opt. Mater. (Amst.) 66, 494 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagaiyan Sekar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1740 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erande, Y., Kothavale, S., Sreenath, .C. et al. Triphenylamine Derived 3-Acetyl and 3-Benzothiazolyl Bis and Tris Coumarins: Synthesis, Photophysical and DFT Assisted Hyperpolarizability Study. J. Electron. Mater. 47, 1431–1446 (2018). https://doi.org/10.1007/s11664-017-5925-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5925-7

Keywords

Navigation