Log in

Sandwich-Like Graphite–Fullerene Composites with Enhanced Electromagnetic Wave Absorption

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Sandwich-like graphite–fullerene composites have been prepared via a simple solution mixing/evaporation method. The complex relative permittivity and permeability of the graphite–fullerene composites in the frequency range from 0.5 GHz to 18 GHz were measured using a vector network analyzer with the reflection/transmission technique. Additionally, the microwave reflection loss of the composites was calculated using the obtained complex microwave electromagnetic parameters. It was found that the microwave loss peaks in the Ku band were dependent on the concentration of fullerene nanoparticles in the composites. Maximum reflection loss of −30 dB was observed between 2 GHz and 8 GHz when the graphite composites were doped with 1 wt.% fullerene. This absorption loss dropped (−24 dB) when the composite contained 3 wt.% fullerene. In addition, the electrical properties of the graphite were independent of the presence of fullerene in the composites. The tunable microwave reflection loss indicates that these graphite–fullerene composites show promise as wideband electromagnetic wave absorption materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Liu, Y. Pang, M. Zhu, and S. Kobayashi, Nanoscale 6, 2447 (2014).

    Article  Google Scholar 

  2. Y. Zhang, Y. Huang, T.F. Zhang, H.C. Chang, P.S. **ao, H.H. Chen, Z.Y. Huang, and Y.S. Chen, Adv. Mater. 27, 2049 (2015).

    Article  Google Scholar 

  3. A.N. Yusoff and M.H. Abdullah, J. Magn. Magn. Mater. 269, 271 (2004).

    Article  Google Scholar 

  4. J.R. Liu, M. Iton, T. Horikawa, M. Italura, N. Kuwano, and K. Machida, J. Phys. D Appl. Phys. 37, 2737 (2004).

    Article  Google Scholar 

  5. B. Wen, J.J. Zhao, Y.P. Duan, X.G. Zhang, Y.B. Zhao, C. Dong, S.H. Liu, and T.J. Li, J. Phys. D Appl. Phys. 39, 1960 (2006).

    Article  Google Scholar 

  6. S. Motojima, S. Hoshiya, and Y. Hishikawa, Carbon 41, 2653 (2003).

    Article  Google Scholar 

  7. J.R. Jiu, R. Liu, M. Itoh, J.Z. Jiang, and K. Machida, J. Magn. Magn. Mater. 277, 251 (2004).

    Article  Google Scholar 

  8. J.A. Nazia, J. Rahman, and M.A. Chowdhury, Jpn. J. Phys. 39, 3378 (2000).

    Article  Google Scholar 

  9. Y.C. Qing, W.C. Zhou, F. Luo, and D.M. Zhu, J. Magn. Magn. Mater. 321, 25 (2009).

    Article  Google Scholar 

  10. S.B. Ni, S.M. Lin, Q.T. Pan, F. Yang, K. Huang, and D. He, J. Phys. D Appl. Phys. 42, 055004 (2009).

    Article  Google Scholar 

  11. V.N. Bezmelnitsyn, A.V. Eletsky, and M.V. Okun, Uspeshi Phys. Nauk. (Russ.) 168, 1195 (1998).

    Article  Google Scholar 

  12. L.A. Bulavin, I.I. Adamenko, V.M. Yashchuk, and P. Scharff, J. Mol. Liquids 93, 187 (2001).

    Article  Google Scholar 

  13. P. Chen, R.X. Wu, T.X. Zhao, F. Yang, and J.Q. **ao, J. Phys. D Appl. Phys. 38, 2302 (2005).

    Article  Google Scholar 

  14. P.C.P. Watts, D.R. Ponnampalam, W.K. Hsu, A. Barnes, and B. Chambers, Chem. Phys. Lett. 378, 609 (2003).

    Article  Google Scholar 

  15. B. Gao, L. Qiao, J.B. Wang, D. Xue, J. Phys. D Appl. Phys. 41, 235005 (2008).

    Article  Google Scholar 

  16. X.C. Gui, W. Ye, J.Q. Wei, and D. Wu, J. Phys. D Appl. Phys. 42, 075002 (2009).

    Article  Google Scholar 

  17. A. Wadhwan, D. Garrett, and J.M. Perez, Appl. Phys. Lett. 83, 2683 (2003).

    Article  Google Scholar 

  18. W. **e, X. Zhu, S. Yi, J. Kuang, H. Cheng, W. Tang, and Y. Deng, Mater. Des. 90, 38 (2016).

    Google Scholar 

  19. X. Li, D. Lv, and K. Chen, J. Non-Cryst. Solids 358, 2917 (2012).

    Article  Google Scholar 

  20. J. Sun, H. Xu, Y. Shen, and R.-B. Yang, J. Alloys Compd. 548, 18 (2013).

    Article  Google Scholar 

  21. X. Huang, J. Zhang, W. Rao, and Q. Zhang, J. Alloys Compd. 662, 409 (2016).

    Article  Google Scholar 

  22. Y. Tan, J. Tang, A. Deng, and H. Li, J. Magn. Magn. Mater. 326, 41 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiachun Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, J., Jia, K., Pu, Z. et al. Sandwich-Like Graphite–Fullerene Composites with Enhanced Electromagnetic Wave Absorption. J. Electron. Mater. 45, 5921–5927 (2016). https://doi.org/10.1007/s11664-016-4800-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4800-2

Keywords

Navigation