Log in

HgCdTe Research at FFI: Molecular Beam Epitaxy Growth and Characterization

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper presents results from recent work on molecular beam epitaxy growth of HgCdTe at the Norwegian Defence Research Establishment (FFI), including studies of material properties and fabrication of photodiodes and nanostructures. Systematic studies of defect morphology in HgTe and Hg1−x Cd x Te have revealed that there is a minimum in the area covered by defects just below the onset of Te precipitation. The shape and density of microvoids in HgTe can be used to determine the deviation from the optimal growth temperature. This can be further related to the optimal growth temperature of Hg1−x Cd x Te with any Cd mole fraction by thermodynamic calculations. A mechanism for the formation of microvoids and needles has been presented. Photoluminescence (PL) has been used to study layers without do** and with Hg vacancy, Ag, and In do**. Planar photodiodes with high dynamic resistance and good quantum efficiency were fabricated by ion-milling vacancy-doped mid-wave and long-wave infrared layers. Quantum wells (QWs) with good crystallinity and high PL light output have been grown. Surface patterning has been found to enhance light emission from HgCdTe thin-film and QW samples by ∼30%. Single-crystal HgTe and segmented HgTe/Te nanowires have been grown, and the resistivity of the nanowires has been measured by conductive atomic force microscopy (AFM), where the AFM tip has been used as a mobile electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Selvig, C.R. Tonheim, K.O. Kongshaug, T. Skauli, T. Lorentzen, and R. Haakenaasen, J. Vac. Sci. Technol. B 25, 1776 (2007).

    Article  CAS  Google Scholar 

  2. E. Selvig, C.R. Tonheim, K.O. Kongshaug, T. Skauli, H. Hemmen, T. Lorentzen, and R. Haakenaasen, J. Vac. Sci. Technol. B 26, 525 (2008).

    Article  CAS  Google Scholar 

  3. E. Selvig, C.R. Tonheim, T. Lorentzen, K.O. Kongshaug, T. Skauli, and R. Haakenaasen, J. Electron. Mater. 37, 1444 (2008).

    Article  CAS  ADS  Google Scholar 

  4. R. Haakenaasen, H. Steen, E. Selvig, T. Lorentzen, A.D. van Rheenen, L. Trosdahl-Iversen, D. Hall, N. Gordon, T. Skauli, and A.H. Vaskinn, Phys. Scr. T126, 31 (2006).

    Article  CAS  ADS  Google Scholar 

  5. Y. Chang, C.R. Becker, C.H. Grein, J. Zhao, C. Fulk, T. Casselman, R. Kiran, X.J. Wang, E. Robinson, S.Y. An, S. Mallick, S. Sivananthan, T. Aoki, C.Z. Wang, D.J. Smith, S. Velicu, J. Zhao, J. Crocco, Y. Chen, G. Brill, P.S. Wijewarnasuriya, N. Dhar, R. Sporken, and V. Nathan, J. Electron. Mater. 37, 1171 (2008).

    Article  CAS  ADS  Google Scholar 

  6. J.B. Andersen, E. Selvig, and R. Haakenaasen, Presented at 2008 U.S. Workshop on the Physics and Chemistry of II-VI Materials, Las Vegas. Article in preparation for independent submission.

  7. R. Haakenaasen, H. Steen, T. Lorentzen, L. Trosdahl- Iversen, A.D. van Rheenen, and H. Syversen, J. Electron. Mater. 31, 710 (2002).

    Article  CAS  ADS  Google Scholar 

  8. R. Haakenaasen, H. Steen, E. Selvig, T. Lorentzen, A.D. van Rheenen, L. Trosdahl-Iversen, H. Syversen, D. Hall, and N. Gordon, J. Electron. Mater. 34, 922 (2005).

    Article  CAS  ADS  Google Scholar 

  9. M. Green, G. Wakefield, and P.J. Dobson, J. Mater. Chem. 13, 1076 (2003).

    Article  CAS  Google Scholar 

  10. M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L.W. Molenkamp, X.L. Qi, and S.C. Zhang, Science 318, 766 (2007).

    Article  PubMed  ADS  Google Scholar 

  11. M.S. Dresselhaus, Y.-M. Lin, O. Rabin, and G. Dresselhaus, Rep. Nanoscale Microscale Thermophys. Eng. 7, 207 (2003).

    Article  Google Scholar 

  12. C.R. Tonheim, E. Selvig, S. Nicolas, A.E. Gunnæs, M. Breivik, and R. Haakenaasen, J. Phys. Conf. Series. 100, 042024 (2008).

    Article  ADS  Google Scholar 

  13. S. Hadzialic (Cand. Scient. thesis, Department of Physics, University of Oslo, Oslo, 2004).

  14. E. Selvig, S. Hadzialic, R. Haakenaasen, T. Skauli, H. Steen, V. Hansen, L. Trosdahl-Iversen, A.D. van Rheenen, and T. Lorentzen, Phys. Scr. T126, 115 (2006).

    Article  CAS  ADS  Google Scholar 

  15. R. Haakenaasen, E. Selvig, S. Foss, L. Trosdahl-Iversen, and J. Taftø, Appl. Phys. Lett. 92, 133108 (2008).

    Article  ADS  Google Scholar 

  16. R. Haakenaasen, E. Selvig, S. Hadzialic, T. Skauli, V. Hansen, J.E. Tibballs, L. Trosdahl-Iversen, H. Steen, S. Foss, J. Taftø, M. Halsall, and J. Orr, J. Electron. Mater. 37, 1311 (2008).

    Article  CAS  ADS  Google Scholar 

  17. P. Gundersen, K.O. Kongshaug, E. Selvig, and R. Haakenaasen, Presented at 2008 U.S. Workshop on the Physics and Chemistry of II-VI Materials, Las Vegas. Article in preparation for independent submission.

  18. R. Haakenaasen and E. Selvig, Nanowires, ed. P. Prete (Wien: InTech Education and Publishing, 2010), p. 79, ISBN:978-953-7619-79-4, and open access on www.intechweb.org.

  19. C.R. Tonheim, Aa. Sudbø, E. Selvig, and R. Haakenaasen, Presented at 2009 U.S. Workshop on the Physics and Chemistry of II-VI Materials, Chicago. Article in preparation for submission to independent journal.

  20. L. He, Y. Wu, L. Chen, S.L. Wang, M.F. Yu, Y.M. Qiao, J.R. Yang, Y.J. Li, R.J. Ding, and Y. Zhang, J. Cryst. Growth 227–228, 677 (2001).

    Article  Google Scholar 

  21. L.H. Zhang and C.J. Summers, J. Electron. Mater. 27, 634 (1998).

    Article  CAS  ADS  Google Scholar 

  22. J.B. Varesi, A.A. Buell, J.M. Peterson, R.E. Bornfreund, M.F. Vilela, W.A. Radford, and S.M. Johnson, J. Electron. Mater. 32, 661 (2003).

    Article  CAS  ADS  Google Scholar 

  23. D. Chandra, H.D. Shih, F. Aquariden, R. Dat, S. Gutzler, M.J. Bevan, and T. Orent, J. Electron. Mater. 27, 640 (1998).

    Article  CAS  ADS  Google Scholar 

  24. J.M. Arias, M. Zandian, J. Bajaj, J.G. Pasko, L.O. Bubulac, S.H. Shin, and R.E. De Wames, J. Electron. Mater. 24, 521 (1995).

    Article  CAS  ADS  Google Scholar 

  25. Y. Chang, G. Badano, J. Zhao, C.H. Grein, S. Sivananthan, T. Aoki, and D.J. Smith, Appl. Phys. Lett. 83, 4785 (2003).

    Article  CAS  ADS  Google Scholar 

  26. I.V. Sabinina, A.K. Gutakovsky, YuG Sidorov, and A.V. Latyshev, J. Cryst. Growth 274, 339 (2005).

    Article  CAS  ADS  Google Scholar 

  27. T. Colin (Ph.D. thesis, Université Joseph Fourier, Grenoble, 1991).

  28. T. Aoki, Y. Chang, G. Badano, J. Zhao, C. Grein, S. Sivananthan, and D.J. Smith, J. Electron. Mater. 32, 703 (2003).

    Article  CAS  ADS  Google Scholar 

  29. T. Colin and T. Skauli, J. Electron. Mater. 26, 688 (1997).

    Article  CAS  ADS  Google Scholar 

  30. E.C. Piquette, M. Zandian, D.D. Edwall, and J.M. Arias, J. Electron. Mater. 30, 627 (2001).

    Article  CAS  ADS  Google Scholar 

  31. J.P. Gailliard, Rev. Phys. Appl. 22, 457 (1987).

    CAS  Google Scholar 

  32. L. Zhao, J.S. Speck, R. Rajavel, J. Jensen, D. Leonard, T. Strand, and W. Hamilton, J. Electron. Mater. 29, 732 (2000).

    Article  CAS  ADS  Google Scholar 

  33. J. Zhao, Y. Chang, G. Badano, S. Sivananthan, J. Markunas, S. Lewis, J.H. Dinan, P.S. Wijewarnasuriya, Y. Chen, G. Brill, and N. Dhar, J. Electron. Mater. 33, 881 (2004).

    Article  CAS  ADS  Google Scholar 

  34. M. Zandian and E. Goo, J. Electron. Mater. 30, 623 (2001).

    Article  CAS  ADS  Google Scholar 

  35. J.B. Andersen (Master’s thesis, Department of Physics, Norwegian University of Science and Technology, Trondheim, 2008).

  36. A. Lusson, F. Fuchs, and Y. Marfaing, J. Cryst. Growth 101, 673 (1990).

    Article  CAS  ADS  Google Scholar 

  37. F. Fuchs and P. Koidl, Semicond. Sci. Technol. 6, C71 (1991).

    Article  CAS  Google Scholar 

  38. Y. Chang, J.H. Chu, W.G. Tang, W.Z. Shen, and D.Y. Tang, Infrared Phys. Technol. 37, 747 (1996).

    Article  CAS  ADS  Google Scholar 

  39. G.L. Hansen, J.L. Schmit, and T.N. Casselman, J. Appl. Phys. 53, 7099 (1982).

    Article  CAS  ADS  Google Scholar 

  40. F. Yue, J. Chu, J. Wu, Z. Hu, Y. Li, and P. Yang, Appl. Phys. Lett. 92, 121916 (2008).

    Article  ADS  Google Scholar 

  41. S.R. Kurtz, J. Bajaj, D.D. Edwall, and J.C. Irvine, Semicond. Sci. Technol. 8, 941 (1993).

    Article  CAS  ADS  Google Scholar 

  42. N. Tanaka, K. Ozaki, H. Nishino, H. Ebe, and Y. Miyamoto, J. Electron. Mater. 27, 579 (1998).

    Article  CAS  ADS  Google Scholar 

  43. R. Haakenaasen, T. Moen, T. Colin, H. Steen, and L. Trosdahl-Iversen, J. Appl. Phys. 91, 427 (2002).

    Article  CAS  ADS  Google Scholar 

  44. A.D. van Rheenen, H. Syversen, R. Haakenaasen, H. Steen, L. Trosdahl-Iversen, and T. Lorentzen, Phys. Scr. T126, 101 (2006).

    Article  ADS  Google Scholar 

  45. I. Schnitzer, E. Yablonovitch, C. Caneau, T.J. Gmitter, and A. Schere, Appl. Phys. Lett. 63, 2174 (1993).

    Article  CAS  ADS  Google Scholar 

  46. T. Kim, P.O. Leisher, A.J. Danner, R. Wirth, K. Streubel, and K. Choquette, IEEE Photon. Technol. Lett. 18, 1876 (2006).

    Article  CAS  ADS  Google Scholar 

  47. H. Ichikawa and T. Baba, Appl. Phys. Lett. 84, 457 (2004).

    Article  CAS  ADS  Google Scholar 

  48. S. Foss, J. Taftø, and R. Haakenaasen, J. Electron. Microsc. 59, 27 (2010).

    Article  CAS  Google Scholar 

  49. P. Gundersen (Master’s thesis, Department of Physics, Norwegian University of Science and Technology, Trondheim, 2008).

Download references

Acknowledgements

The work was funded by the Norwegian Ministry of Defence. Support for nanowire characterization was provided by the AFOSR under Grant No. FA9550-06-1-0484, P00002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Haakenaasen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haakenaasen, R., Selvig, E., Tonheim, C.R. et al. HgCdTe Research at FFI: Molecular Beam Epitaxy Growth and Characterization. J. Electron. Mater. 39, 893–902 (2010). https://doi.org/10.1007/s11664-010-1211-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1211-7

Keywords

Navigation