Log in

Defects in HgTe and CdHgTe Grown by Molecular Beam Epitaxy

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The defect morphology in HgTe and CdHgTe was studied in (211)B-oriented layers grown in a 20°C temperature range around the optimal growth temperature. The density of defects varies strongly with the growth temperature. In HgTe, the shape of the microvoid defects is very sensitive to the growth temperature and can be used to determine the deviation from the optimal growth temperature. Using thermodynamical modeling, the optimal growth temperature for CdHgTe can then be calculated. We describe a mechanism for the formation of microvoids and needles which involves preferential surface diffusion of Te combined with an impurity or defect on the substrate. Microvoids on (111)B-oriented partially twinned HgTe layers were also studied. The microvoids in the twinned parts of the layer were found to be rotated 180 deg relative to the untwinned parts of the layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Haakenaasen, H. Steen, T. Lorentzen, L. Trosdahl-Iversen, A.D. van Rheenen, and H. Syversen, J. Electron. Mater. 31, 710 (2002). doi:10.1007/s11664-002-0224-2

    Article  CAS  Google Scholar 

  2. R. Haakenaasen, H. Steen, E. Selvig, T. Lorentzen, A.D. van Rheenen, L. Trosdahl-Iversen, H. Syversen, D. Hall, and N. Gordon, J. Electron. Mater. 34, 922 (2005). doi:10.1007/s11664-005-0043-3

    Article  CAS  Google Scholar 

  3. G.L. Hansen, J.L. Schmit, and T.N. Casselman, J. Appl. Phys. 53, 7099 (1982). doi:10.1063/1.330018

    Article  CAS  Google Scholar 

  4. P.S. Wijewarnasuriya, M. Zandian, D.B. Young, J. Waldrop, D.D. Edwall, W.V. McLevige, D. Lee, and J. Arias, J. Electron. Mater. 28, 649 (1999). doi:10.1007/s11664-999-0048-4

    Article  CAS  Google Scholar 

  5. J.B. Varesi, A.A. Buell, J.M. Peterson, R.E. Bornfreund, M.F. Vilela, W.A. Radford, and S.M. Johnson, J. Electron. Mater. 32, 661 (2003). doi:10.1007/s11664-003-0049-7

    Article  CAS  Google Scholar 

  6. E. Selvig, C.R. Tonheim, K.O. Kongshaug, T. Skauli, T. Lorentzen, and R. Haakenaasen, J. Vac. Sci. Technol. B. 25, 1776 (2007). doi:10.1116/1.2787876

    Article  CAS  Google Scholar 

  7. T. Skauli, T. Colin, and S. Løvold, J. Vac. Sci. Technol. A. 12, 274 (1994). doi:10.1116/1.578867

    Article  CAS  Google Scholar 

  8. I. Hähnert, and M. Schenk, J. Cryst. Growth 101, 251 (1990). doi:10.1016/0022-0248(90)90976-R

    Article  Google Scholar 

  9. I.V. Sabinina, A.K. Gutakovsky, Yu.G. Sidorov, and A.V. Latyshev, J. Cryst. Growth 274, 339 (2005). doi:10.1016/j.jcrysgro.2004.10.053

    Article  CAS  Google Scholar 

  10. Y. Chang, G. Badano, J. Zhao, C.H. Grein, S. Sivananthan, T. Aoki, and D.J. Smith, Appl. Phys. Lett. 83, 4785 (2003). doi:10.1063/1.1633017

    Article  CAS  Google Scholar 

  11. J.M. Arias, M. Zandian, J. Bajaj, J.G. Pasko, L.O. Bubulac, S.H. Shin, and R.E. De Wames, J. Electron. Mater. 24, 521 (1995). doi:10.1007/BF02657957

    Article  CAS  Google Scholar 

  12. E.C. Piquette, M. Zandian, D.D. Edwall, and J.M. Arias, J. Electron. Mater. 30, 627 (2001). doi:10.1007/BF02665846

    Article  CAS  Google Scholar 

  13. L.H. Zhang, and C.J. Summers, J. Electron. Mater. 27, 634 (1998). doi:10.1007/s11664-998-0027-1

    Article  CAS  Google Scholar 

  14. T. Colin, and T. Skauli, J. Electron. Mater. 26, 688 (1997). doi:10.1007/s11664-997-0217-2

    Article  CAS  Google Scholar 

  15. T. Colin (Ph.D. thesis, Université Joseph Fourier, Grenoble, 1991, in French).

  16. E. Selvig, C.R. Tonheim, K.O. Kongshaug, T. Skauli, H. Hemmen, T. Lorentzen, and R. Haakenaasen, J. Vac. Sci. Technol. B 26, 525 (2008). doi:10.1116/1.2868782.

    Google Scholar 

  17. D. Chandra, H.D. Shih, F. Aqariden, R. Dat, S. Gutzler, M.J. Bevan, and T. Orent, J. Electron. Mater. 27, 640 (1998). doi:10.1007/s11664-998-0028-0

    Article  CAS  Google Scholar 

  18. R. Haakenaasen, H. Steen, E. Selvig, T. Lorentzen, A.D. van Rheenen, L. Trosdahl-Iversen, D. Hall, N. Gordon, T. Skauli, and A.H. Vaskinn, Phys. Scripta. T126, 31 (2006). doi:10.1088/0031-8949/2006/T126/007

    Article  CAS  Google Scholar 

  19. L. Zhao, J.S. Speck, R. Rajavel, J. Jensen, D. Leonard, T. Strand, and W. Hamilton, J. Electron.Mater. 29, 732 (2000). doi:10.1007/s11664-000-0216-z

    Article  CAS  Google Scholar 

  20. J. Zhao, Y. Chang, G. Badano, S. Sivananthan, J. Markunas, S. Lewis, J.H. Dinan, P.S. Wijewarnasuriya, Y. Chen, G. Brill, and N. Dhar, J. Electron. Mater. 33, 881 (2004). doi:10.1007/s11664-004-0215-6

    Article  CAS  Google Scholar 

  21. M. Zandian, and E. Goo, J. Electron. Mater. 30, 623 (2001). doi:10.1007/BF02665845

    Article  CAS  Google Scholar 

  22. T. Nishiguchi, Y. Mukai, M. Nakamura, K. Nishio, T. Isshiki, S. Ohshima, and S. Nishino, Mater. Sci. Forum. 457–460, 285 (2004)

    Article  Google Scholar 

  23. Y. Chang, private communication.

  24. M. Breivik, E. Selvig, C.R. Tonheim, E. Brendhagen, T. Brudevoll, A.D. van Rheenen, H. Steen, S. Nicolas, T. Lorentzen, and R. Haakenaasen, J. Phys.: Conf. Ser. 100, 042041. doi:10.1088/1742-6596/100/4/042041

  25. A. Lusson, F. Fuchs, and Y. Marfang, J. Cryst. Growth 101, 673 (1990). doi:10.1016/0022-0248(90)91056-V

    Article  CAS  Google Scholar 

  26. J.E. Hails, G.J. Russel, A.W. Brinkman, and J. Woods, J. Cryst. Growth 79, 940 (1986). doi:10.1016/0022-0248(86)90576-2

    Article  CAS  Google Scholar 

  27. H. Tatsuoka, H. Kuwabara, Y. Nakanishi, and H. Fujiyasu, Appl. Surf. Sci. 65/66, 426 (1993). doi:10.1016/0169-4332(93)90696-9

    Article  Google Scholar 

Download references

Acknowledgement

Laila Trosdahl-Iversen is acknowledged for substrate preparation and defect etching.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Selvig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selvig, E., Tonheim, C., Lorentzen, T. et al. Defects in HgTe and CdHgTe Grown by Molecular Beam Epitaxy. J. Electron. Mater. 37, 1444–1452 (2008). https://doi.org/10.1007/s11664-008-0447-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-008-0447-y

Keywords

Navigation