Log in

Nanowires in the CdHgTe Material System

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

HgTe nanowires have been grown by molecular beam epitaxy (MBE). They are nucleated at Au particles on Si or GaAs substrates and subsequently self-organize and grow laterally on the surface into 20–50 nm wide, 0.5–1 μm long twisted, but single-crystal, wires. Further growth gives longer, wider, and straighter polycrystalline wires. When unimpeded by Au particles on the surface, the wires become straight and consist of segments of cubic 〈111〉 HgTe and hexagonal 〈001〉 Te parallel to the wire. Te nanowires and Au␣nanowires have also occasionally been formed. All attempts to grow CdHgTe on Si substrates with or without Au particles have resulted in polycrystalline layers. The phase diagrams and diffusion coefficients imply that CdHgTe or HgTe nanowires will not grow by the vapor–liquid–solid technique at the low MBE growth temperatures. SiO2 functions as a mask for selective growth of HgTe, but not for CdHgTe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.S. Wagner, and W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964).

    Article  CAS  Google Scholar 

  2. A.I. Persson, M.W. Larsson, S. Stenstrom, B.J. Ohlsson, L. Samuelson, and L.R. Wallenberg, Nature Mater. 3, 677 (2004).

    Article  CAS  Google Scholar 

  3. C.X. Shan, Z. Liu, and S.K. Hark, Appl. Phys. Lett. 87, Art. No. 163108 (2005).

  4. E. Janik, J. Sadowski, P. Dluzewski, S. Kret, L.T. Baczewski, A. Petroutchik, E. Lusakowska, J. Wrobel, W. Zaleszczyk, G. Karczewski, T. Wojtowicz, and A. Presz, Appl. Phys. Lett. 89, Art. No. 133114 (2006).

  5. M. Green, G. Wakefield, and P.J. Dobson, J. Mater. Chem. 13, 1076 (2003).

    Article  CAS  Google Scholar 

  6. H. Song, K. Cho, H. Kim, J.S. Lee, B. Min, H.S. Kim, S.-W. Kim, T. Noh, and S. Kim, J. Cryst. Growth. 269, 317 (2004).

    Article  CAS  Google Scholar 

  7. A.-M. Qin, Y.-P. Fang, and C.-Y. Su, Mater. Lett. 61, 126 (2007).

    Article  CAS  Google Scholar 

  8. R. Carter, J. Sloan, A.I. Kirkland, R.R. Meyer, P.J.D. Lindan, G. Lin, M.L.H. Green, A. Vlandas, J.L. Hutchinson, and J. Harding, Phys. Rev. Lett. 96, 215501 (2006).

    Article  Google Scholar 

  9. A. Ranga Roa and V. Dutta, Mater. Res. Symp. Proc. 901E, 0901-Ra11-19-Rb11-19.1 (2006).

  10. B. Tang, F. Yang, Y. Ciu, L. Zhuo, J. Ge, and L. Cao, Chem. Mater. 19, 1212 (2007).

    Article  CAS  Google Scholar 

  11. E. Selvig, S. Hadzialic, R. Haakenaasen, T. Skauli, H. Steen, V. Hansen, L. Trosdahl-Iversen, A.D. van Rheenen, and T. Lorentzen, Phys. Scripta. T126, 115 (2006).

    Article  CAS  Google Scholar 

  12. T. Colin, and T. Skauli, J. Electron. Mater. 26, 688 (1997).

    Article  CAS  Google Scholar 

  13. E. Selvig, C.R. Tonheim, K.O. Kongshaug, T. Skauli, H. Hemmen, T. Lorentzen, and R. Haakenaasen, J. Vac. Sci. Technol. B 26, 525 (2008).

    Google Scholar 

  14. E. Selvig, C.R. Tonheim, K.O. Kongshaug, T. Skauli, T. Lorentzen, and R. Haakenaasen, J. Vac. Sci. Technol. B. 25, 1776 (2007).

    Article  CAS  Google Scholar 

  15. F. Zhang, R. Barrowcliff, G. Stecker, D. Wang, and S.-T. Hsu, NSTI-Nanotech 2005 Conf. Proc. 2, 623 (2005).

    CAS  Google Scholar 

  16. R. Haakenaasen, E. Selvig, S. Foss, L. Trosdahl-Iversen, and J. Taftø, Appl. Phys. Lett. 92, 133108 (2008).

    Google Scholar 

  17. W.G. Morfatt, The handbook of binary phase diagrams (Schenectady: General Electric Company) 1977.

    Google Scholar 

  18. A.I. Mortlock, and A.H. Rowe, Philos. Mag. 11, 1157 (1965).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The work was supported by the AFOSR under Grant No. FA9550-06-1-0484, P00002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Haakenaasen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haakenaasen, R., Selvig, E., Hadzialic, S. et al. Nanowires in the CdHgTe Material System. J. Electron. Mater. 37, 1311–1317 (2008). https://doi.org/10.1007/s11664-008-0414-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-008-0414-7

Keywords

Navigation