Log in

Realization of very long wavelength infrared photovoltaic detector arrays on mercury cadmium telluride epitaxial layers grown on Si substrates

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper proposes a development of n-on-p structures for realizing very long wavelength infrared (VLWIR) detector arrays on mercury cadmium telluride (HgCdTe) epitaxial layers grown on Si substrates. It is shown from a comparative study of zero-bias resistance-area product (R0A) of diodes in n-on-p and p-on-n configurations that the n-on-p structure has promising potential to control contribution of dislocations, without actually reducing dislocation density below the current level (mid-106 cm−2) of HgCdTe/Si material technology. The resulting gain will be in terms of both higher numerical magnitudes of R0A and its reduced scatter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Ashokan, N.K. Dhar, B. Yang, A. Akhiyat, T.S. Lee, S. Rujirawat, S. Yousuf, and S. Sivananthan, J. Electron. Mater. 29, 636 (2000).

    Article  CAS  Google Scholar 

  2. K.D. Maranowski, J.M. Peterson, S.M. Johnson, J.B. Varesi, W.A. Radford, A.C. Childs, R.E. Bornfreund, and A.A. Buell, J. Electron. Mater. 30, 619 (2001).

    CAS  Google Scholar 

  3. J.B. Varesi, R.E. Bornfreund, A.C. Childs, W.A. Radford, K.D. Maranowski, J.M. Peterson, S.M. Johnson, L.M. Giegerich, T.J. de Lyon, and J.E. Jensen, J. Electron. Mater. 30, 566 (2001).

    CAS  Google Scholar 

  4. J.B. Varesi, A.A. Buell, R.E. Bornfreund, W.A. Radford, J.M. Peterson, K.D. Maranowski, S.M. Johnson, and D.F. King, J. Electron. Mater. 31, 815 (2002).

    Article  CAS  Google Scholar 

  5. J.B. Varesi, A.A. Buell, J.M. Peterson, R.E. Bornfreund, M.F. Vilela, W.A. Radford, S.M. Johnson, and D.F. King, J. Electron. Mater. 32, 661 (2003).

    Article  CAS  Google Scholar 

  6. S.M. Johnson et al., J. Electron. Mater. 33, 526 (2004).

    Article  CAS  Google Scholar 

  7. M. Carmody et al., J. Electron. Mater. 33, 531 (2004).

    Article  CAS  Google Scholar 

  8. N.K. Dhar, P.R. Boyd, M. Martinka, J.H. Dinan, L.A. Almeida, and N. Goldsman, J. Electron. Mater. 29, 748 (2000).

    Article  CAS  Google Scholar 

  9. P.J. Taylor, W.A. Jesser, M. Martinka, K.M. Singley, J.H. Dinan, R.T. Lareau, M.C. Wood, and W.W. Clark III, J. Vac. Sci. Technol. A 17, 1153 (1999).

    Article  CAS  Google Scholar 

  10. N.K. Dhar, C.E.C. Wood, A. Gray, H.Y. Wei, L. Salamanca Riba, and J.H. Dinan, J. Vac. Sci. Technol. B 14, 2366 (1996).

    Article  CAS  Google Scholar 

  11. Y.P. Chen, G. Brill, and N.K. Dhar, J. Cryst. Growth 252, 270 (2003).

    Article  CAS  Google Scholar 

  12. N.H. Karam, V. Haven, S.M. Vernon, N. El-Masry, E.H. Lingunis, and N. Haegal, J. Cryst. Growth 107, 129 (1991).

    Article  CAS  Google Scholar 

  13. X.G. Zhang, P. Li, G. Zhao, D.W. Parent, F.C. Jain, and J.E. Ayers, J. Electron. Mater. 27, 1248 (1998).

    Article  CAS  Google Scholar 

  14. X.G. Zhang, A. Rodriguez, P. Li, F.C. Jain, and J.E. Ayers, Appl. Phys. Lett. 91, 3912 (2002).

    CAS  Google Scholar 

  15. X.G. Zhang, A. Rodriguez, X. Wang, P. Li, F.C. Jain, and J.E. Ayers, Appl. Phys. Lett. 77, 2524 (2002).

    Article  Google Scholar 

  16. V. Gopal and S. Gupta, J. Electron. Mater. 34, 1280 (2005).

    Article  CAS  Google Scholar 

  17. V. Gopal and S. Gupta, IEEE Transactions on Electron Devices 51, 1220 (2003).

    Article  CAS  Google Scholar 

  18. V. Gopal and S. Gupta, IEEE Transactions on Electron Devices, 51, 1078 (2004).

    Article  CAS  Google Scholar 

  19. A. Many, Y. Goldstein, and N.B. Grover, Semiconductor Surfaces (Amsterdam, The Netherlands: North-Holland Publishing Company, 1965), p. 197.

    Google Scholar 

  20. M.B. Riene, A.K. Sood, and T.J. Tredwell, Photovoltaic Infrared Detectors, ed. R.K. Willardson and A.C. Beer, (New York: Academic Press, 1981), p. 201.

    Google Scholar 

  21. V. Gopal and S. Gupta, J. Appl. Phys. 95, 2467 (2004).

    Article  CAS  Google Scholar 

  22. S.P. Tobin, M.H. Weiler, M.A. Hutchins, T. Parodos, and P.W. Norton, J. Electron. Mater. 28, 596 (1999).

    Article  CAS  Google Scholar 

  23. A. Rogalski and R. Ciupa, J. Appl. Phys. 77, 3505 (1995).

    Article  CAS  Google Scholar 

  24. V. Gopal and S. Gupta, Infrared Phys. Technol. 48, 59 (2006).

    Article  CAS  Google Scholar 

  25. V. Gopal and S. Gupta, Phys. Status Solidi A 203, 397 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S., Gopal, V. & Tandon, R.P. Realization of very long wavelength infrared photovoltaic detector arrays on mercury cadmium telluride epitaxial layers grown on Si substrates. J. Electron. Mater. 35, 2056–2060 (2006). https://doi.org/10.1007/s11664-006-0313-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-006-0313-8

Key words

Navigation