Log in

VLWIR HgCdTe detector current-voltage analysis

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This article details current-voltage characteristics for a very long wavelength infrared (VLWIR) Hg1−x CdxTe detector from Raytheon Vision Systems with a cutoff wavelength of 20.0 µm at 28 K. In this article, the VLWIR detector diode currents are modeled as a function of bias and temperature. This in-depth current model includes diffusion, band-to-band tunneling, trap-assisted tunneling (TAT), and shunt currents. The trap density has been extracted from the modeled TAT component of the current and was revealed to be relatively temperature-independent. An attempted incorporation of VLWIR detector susceptibility to stress has also been included through variation of the model parameter associated with the p-n junction electric field strength. This field variation accounts for stress induced piezoelectric fields. The current in this VLWIR detector was found to be diffusion-limited under much of the temperature and bias ranges analyzed. This modeling allows the scrutiny of both the dominant current-limiting mechanism and the magnitudes of the various current components as a function of both bias and temperature, allowing the straightforward determination of the ideal operating conditions for a given detector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.L. Hansen and J.L. Schmit, J. Appl. Phys. 54, 1639 (1983).

    Article  CAS  Google Scholar 

  2. C.F. Wan, J.D. Luttmer, R.S. List, and R.L. Strong, Piezoelectric effects in HgCdTe devices. J. Electron. Mater. 24, 1293 (1995).

    CAS  Google Scholar 

  3. A.S. Gilmore, J. Bangs, and A. Gerrish, J. Electron. Mater. 34, 913 (2005).

    Article  CAS  Google Scholar 

  4. A.S. Gilmore, J. Bangs, and A. Gerrish, Proc. SPIE 5563, 46 (2004).

    Article  Google Scholar 

  5. P.R. Bevington and D.K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. (New York: WCB/McGraw-Hill, 1992).

    Google Scholar 

  6. S.M. Sze, Physics of Semiconductor Devices, 2nd ed. (New York: John Wiley & Sons, 1981).

    Google Scholar 

  7. A.G. Chynoweth, W.L. Feldmann, C.A. Lee, R.A. Logan, and G.L. Pearson, Phys. Rev. 118, 425 (1960).

    Article  CAS  Google Scholar 

  8. A.G. Chynoweth, W.L. Feldmann, and R.A. Logan, Phys. Rev. 121, 684 (1961).

    Article  CAS  Google Scholar 

  9. P.J. Price, Bull. Am. Phys. Soc. 5, 406 (1960).

    Google Scholar 

  10. C.T. Sah, Phys. Rev. 123, 1594 (1961).

    Article  CAS  Google Scholar 

  11. M.A. Kinch, in Semiconductors and Semimetals, ed. R.K. Williardson and A.C. Beer, (New York: Academic Press, 1981), vol. 18, pp. 333–338.

    Google Scholar 

  12. Y. Nemirovsky, D. Rosenfeld, R. Adar, and A. Kornfeld, J. Vac. Sci. Technol. A7, 528 (1989).

    Google Scholar 

  13. Y. Nemirovsky, R. Fastow, M. Meyassed, and A. Unikovsky, J. Vac. Sci. Technol. B9, 1829 (1991).

    Google Scholar 

  14. Y. Nemirovsky and A. Unikovsky, J. Vac. Sci. Technol. B10, 1602 (1992).

    Google Scholar 

  15. S.K. Singh, V. Gopal, R.K. Bhan, and V. Kumar, Semicond. Sci. Technol. 15, 752 (2000).

    Article  CAS  Google Scholar 

  16. D. Rosenfeld and G. Bahir, IEEE Trans. Electron Devices 39, 1638 (1992).

    Article  CAS  Google Scholar 

  17. V. Gopal, S.K. Singh, and R.M. Mehra, Semicond. Sci. Technol. 16, 372 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilmore, A.S., Bangs, J. & Gerrish, A. VLWIR HgCdTe detector current-voltage analysis. J. Electron. Mater. 35, 1403–1410 (2006). https://doi.org/10.1007/s11664-006-0275-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-006-0275-x

Key words

Navigation